Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T17:35:37.711Z Has data issue: false hasContentIssue false

Preparation, Properties and Structure of Metal/oxide Interfaces

Published online by Cambridge University Press:  26 February 2011

H. F. Fischmeister
Affiliation:
Max-Planck-Institut f. Metallforschung, D-7000 Stuttgart, FRG
W. Mader
Affiliation:
Max-Planck-Institut f. Metallforschung, D-7000 Stuttgart, FRG
B. Gibbesch
Affiliation:
Max-Planck-Institut f. Metallforschung, D-7000 Stuttgart, FRG
G. Elssner
Affiliation:
Max-Planck-Institut f. Metallforschung, D-7000 Stuttgart, FRG
Get access

Abstract

Bicrystal specimens of accurately controlled orientation and interface purity are critical for research into the structure and properties of interfaces. An apparatus is described which allows single crystals of a metal and an oxide to be bonded in exact, predetermined azimuthal orientation in an ultra high vacuum after sputter cleaning. Provisions for the monitoring of surface cleanliness by Auger spectroscopy and for controlled deposition of impurities on the mating surfaces are described.

Interfacial bond strength is assessed by measuring the work of propagation of a crack along the interface, and the fracture mechanical background of such measurements is discussed.The structure of the interfaces is studied by conventional and high resolution TEM. Such studies have been performed on interfaces created by diffusion bonding and by in-situ growth of oxide particles in metal matrices. Systems studied include Nb/A120 3, Cu/A12O3, Pd/A12O3, Pd/ZnO, Ag/ZnO, and Ag/CdO. All interfaces were found to be atomically sharp and to have densely packed planes and directions of the metal parallel to those of the oxygen sublattice; residual misorientation is accommodated by dislocations. For Ag/CdO and Pd/ZnO, HREM and hydrogen trapping experiments show that the outermost plane of the oxide consists either of oxygen or metal ions, depending on the relative activities of the two components in the matrix.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1. Schmauder, S. and Kohlhoff, S., Finite Elements in Engineering Applications 1, 215 1987.Google Scholar
2. Suga, T. and Elssner, G., J. de Physique 46, C4657 (1985).Google Scholar
3. Comninou, M., J. Appl. Mech. E 44, 631 1977.Google Scholar
4. Mak, A.F., Keer, L.M., Chen, S.H. and Lewis, J.L., J. Appl. Mech. 47, 347 1980.Google Scholar
5. Suga, T., Ph. D. Thesis, Univ. Stuttgart (1983).Google Scholar
6. Dundurs, J., J. Appl. Mech. 36, 650 1969.CrossRefGoogle Scholar
7. Rice, J.R. and Sih, G.C., J. Appl. Mech. E 32 418 (1965).CrossRefGoogle Scholar
8. Suga, T., Elssner, G. and Schmauder, S., J. Comp. Mat., in press.Google Scholar
9. Schnmauder, S., in Ceramic Forum International 2, 101 1987.Google Scholar
10. Suga, T., Schmauder, S. and Elssner, G., presented at the Int. Conf. on Interface Science and Engineering, Lake Placid, N.Y., July 12-17 (1987), J. de Physique, in press.Google Scholar
11. Evans, A.G., Lu, M.C., Schmauder, S. and Riihle, M., Acta Metall. 34, 1643 1986.Google Scholar
12. Gibbesch, B., Elssner, G., Mader, W. and Fischmeister, H.F., presented at the Intern. Forum on Joining of Structural Ceramics, Pittsburgh, 1987, Advances in Ceramics, in press; J.A. Eastman and M. Rifihle, ibid.Google Scholar
13. Elssner, G., Suga, T. and Turwitt, M., J. de Physique 46, C4597 (1985).Google Scholar
14. Turwitt, M., Elssner, G. and Petzow, G., J. de Physique 46, C4123 (1985).Google Scholar
15. Morozumi, S., Kikuchi, M. and Nishino, T., J. Mat. Science 16, 2137 1981.Google Scholar
16. Klomp, J.T., in Ceramic Microstructures '86: Role of Interfaces, edited by Pask, J.A. and Evans, A.G. (Plenum Press, New York, London, 1988) pp. 307318; B. Derby, ibid, pp. 319-328; M. Riihle, M. Backhaus-Ricoult, K. Burger and W. Mader, ibid, pp. 295-306.Google Scholar
17. Courbiere, M., Ph. D. Thesis, Univ. Lyon (1986).Google Scholar
18. Akaike, M. and Funakubo, H. (unpublished).Google Scholar
19. Gibbesch, B. (unpublished).Google Scholar
20. Derby, B. and Wallach, E. R., Metal Sci. 16, 49 1982.Google Scholar
21. Burger, K., Mader, W. and Rühle, M., Ultramicroscopy 22, 1 1987.CrossRefGoogle Scholar
22. Elssner, G., Jehn, H. and Fromm, E., High Temperatures - High Pressures 10, 487 1978.Google Scholar
23. Mulder, C.A.M. and Klomp, J.T., J. de Physique 46, C4111 (1985).Google Scholar
24. Mader, W. and Riihle, M. (unpublished).Google Scholar
25. Yamaguchi, G., Yasui, I. and Chiu, W.-C., Bull. Chem. Soc. Jap. 43, 2487 1970.Google Scholar
26. Mader, W., Mat. Res. Soc. Proc. 82, 403 1987.CrossRefGoogle Scholar
27. Fischmeister, H.F., Karagöz, S., Larsson, S., Liem, I., Sotkovszki, P., Prakt. Metallogr. Sonderb. 18 (1987) 467478.Google Scholar
28. Gitzen, W.H., Alumina as a Ceramic Material, edited by Gitzen, W.H. (The American Ceramic Society, Columbus, Ohio, 1970).Google Scholar
29. Johnson, K.H. and Pepper, S.V., J. Appl. Phys. 53, 6634 1982.Google Scholar
30. Klomp, J.T., in Fundamentals of Diffusion Bonding, edited by Ishida, Y. (Elsevier Science Publishers, Amsterdam, 1987) pp. 323.Google Scholar
31. Ferro, R. and Capelli, R., Atti Accad. Naz. Lincei, Rend., Classe Sci. Fis., Mat. Nat. 34, 659 1963.Google Scholar
32. Necker, G. and Mader, W., this volume.Google Scholar
33. Gohring, E. and Mader, W. (unpublished).Google Scholar
34. Huang, X.Y., Mader, W., Eastman, J.A. and Kirchheim, R., Scripta Metall., in press.Google Scholar
35. Maurer, R. and Fischmeister, H.F., submitted to Acta Metall.Google Scholar
36. Jokl, M.L., Vitek, V. and McMahon, C.J., Acta Metall. 28, 1479 1980.Google Scholar
37. Hack, J.E., Chen, S.P. and Srolovitz, D.J., Acta Metall., in press.Google Scholar
38. Butenuth, E. et al. (unpublished).Google Scholar