Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-20T00:04:27.318Z Has data issue: false hasContentIssue false

Preparation of Ultraviolet Light Emitting ZnO Nanoparticles Via a Novel Synthesis Route

Published online by Cambridge University Press:  26 February 2011

Yuntao Li
Affiliation:
Polymer Technology Center, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843–3123
Richard D. Yang
Affiliation:
Department of Chemistry, Texas A&M University, College Station, Texas 77843
S. Tripathy
Affiliation:
Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602
H.-J. Sue
Affiliation:
Polymer Technology Center, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843–3123
N. Miyatake
Affiliation:
KANEKA Texas Corporation, Pasadena, TX 77057
R. Nishimura
Affiliation:
KANEKA Corporation, Hyogo, Japan 676–8688
Get access

Abstract

A new synthesis methodology is utilized to prepare ZnO nanoparticles with a narrow size distribution between 2 to 4 nm. The particle growth is found to be reaction time dependent. The dry powders of ZnO nanoparticles show a strong blue-shifted near-band-edge ultraviolet emission, and the size and size distribution of the particles did not exhibit noticeable change during solvent evaporation. Raman spectra show ZnO E22 (TO) phonon mode and other vibration modes that are attributed to the bound acetate group. The CO stretching mode in the Raman spectra is red-shifted to 1401 cm-1, indicating a strong adsorption of the acetate ligands onto ZnO surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pearton, S. J., Norton, D. P., Ip, K., Heo, Y. W. and Steiner, T., Prog. Mater. Sci. 50(3), 293340 (2005).Google Scholar
2. ElShall, M. S., Graiver, D., Pernisz, U., and Baraton, M. I., Nanostruct. Mater. 6, 297300 (1995).Google Scholar
3. Meulenkamp, E. A., J. Phys. Chem. B, 102, 55665572 (1998).Google Scholar
4. van Dijken, A., Meulenkamp, E. A., Vanmaekelbergh, D., and Meijerink, A., J. Lumin. 90, 123128 (2000).Google Scholar
5. Guo, L., Yang, S. H., Yang, C. L., Yu, P., Wang, J. N., Ge, W. K., and Wong, G. K. L., Appl. Phys. Lett. 76, 29012903 (2000).Google Scholar
6. Mahamuni, S., Borgohain, K., Bendre, B. S., Leppert, V. J., and Risbud, S. H., J. Appl. Phys. 85, 28612865 (1999).Google Scholar
7. Li, Y., Sue, H.-J., Miyatake, N., and Nishimura, R., US Patent, Application #10/848,882, 2004.Google Scholar
8. Pacholski, C., Kornowski, A., and Weller, H., Angew. Chem. Int. Ed. 41, 11881191 (2002).Google Scholar
9. Chen, Y. F., Bagnall, D. M., Koh, H. J., Park, K. T., Hiraga, K., Zhu, Z. Q., and Yao, T., J. Appl. Phys. 84, 39123918 (1998).Google Scholar
10. Frost, R. L. and Kloprogge, J. T., J. Mol. Struct. 526, 131141 (2000).Google Scholar