Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T07:22:31.075Z Has data issue: false hasContentIssue false

Preparation of Optoelectronic Devices Based on AlN/AlGaN Superlattices

Published online by Cambridge University Press:  11 February 2011

M. Holtz
Affiliation:
Department of Physics, Texas Tech University, Lubbock, Texas 79409 Nano Tech Center, Texas Tech University, Lubbock, Texas 79409
G. Kipshidze
Affiliation:
Department of Electrical Engineering, Texas Tech University, Lubbock, Texas 79409
A. Chandolu
Affiliation:
Department of Electrical Engineering, Texas Tech University, Lubbock, Texas 79409
J. Yun
Affiliation:
Department of Electrical Engineering, Texas Tech University, Lubbock, Texas 79409
B. Borisov
Affiliation:
Department of Electrical Engineering, Texas Tech University, Lubbock, Texas 79409
V. Kuryatkov
Affiliation:
Department of Electrical Engineering, Texas Tech University, Lubbock, Texas 79409
K. Zhu
Affiliation:
Department of Electrical Engineering, Texas Tech University, Lubbock, Texas 79409
S. N. G. Chu
Affiliation:
Agere Systems, Murray Hill, NJ 07974
S. A. Nikishin
Affiliation:
Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 Department of Electrical Engineering, Texas Tech University, Lubbock, Texas 79409
H. Temkin
Affiliation:
Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 Department of Electrical Engineering, Texas Tech University, Lubbock, Texas 79409
Get access

Abstract

We present results on growth and fabrication experiments of AlN/AlGaN superlattices for ultraviolet (UV) optoelectronic devices. Superlattices with extremely short periods have been studied. The AlN “barrier” layers are 0.5 nm thick, and the AlxGa1-xN “wells” are 1.25 nm thick, with x ∼ 0.08. This combination gives an average AlN mole fraction of 0.63 across one full period. The superlattice periods, AlN mole fractions, and energy gaps are determined using TEM, X-ray diffraction, and optical reflectance. They are all consistent with each other. For device fabrication, p-i-n structures are grown doped with Si (n-type) and Mg (p-type). The acceptor activation energy of ∼ 0.2 eV is found. Mesa structures are plasma etched using chlorine chemistry. Etch rates of AlN are ∼ 1/3 those of GaN under identical circumstances. Etch rates of 250 nm/min are used for the device structures. A light emitting diode, with primary emission at 280 nm is reported, and a detector with sensitivity edge at 260 nm are reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tadamoto, K., Okagawa, H., Ohuchi, Y., Tsunekawa, T., Imada, Y., Kato, H., and Taguchi, T., Jpn. J. Appl. Phys. 40, L583 (2001).Google Scholar
2. Nishida, T., Saito, H., and Kobayashi, N., Appl. Phys. Lett. 78, 3927 (2001).Google Scholar
3. Hirayama, H., Kinoshita, A., Ainoya, M., Hirata, A., and Aoyagi, Y., phys. stat. sol. (a) 188, 83 (2001).Google Scholar
4. Adivarahan, V., Chitnis, A., Zhang, J. P., Shatalov, M., Yang, J. W., Simin, G., and Khan, M. A., Appl. Phys. Lett. 79, 4240 (2001).Google Scholar
5. Kipshidze, G., Kuryatkov, V., Borisov, B., Holtz, M., Nikishin, S., and Temkin, H., Appl. Phys. Lett. 80, 3682 (2002).Google Scholar
6. Holtz, M., Prokofyeva, T., Seon, M., Copeland, K., Vanbuskirk, J., Williams, S., Nikishin, S., Tretyakov, V., and Temkin, H., J. Appl. Phys. 89, 7977 (2001).Google Scholar
7. Holtz, M., Seon, M., Prokofyeva, T., Temkin, H., Singh, R., Dabkowski, F. P., and Moustakas, T. D., Appl. Phys. Lett. 75, 1757 (1999).Google Scholar
8. Prokofyeva, T., Seon, M., Vanbuskirk, J., Holtz, M., Nikishin, S. A., Faleev, N. N., Temkin, H., and Zollner, S., Phys. Rev. B 63, 125313/1 (2000).Google Scholar
9. Kuryatkov, V., Chandolu, A., Borisov, B., Kipshidze, G., Zhu, K., Nikishin, S. A., Temkin, H., and Holtz, M., Appl. Phys. Lett., (submitted), 2002.Google Scholar
10. Kipshidze, G., Kuryatkov, V., Borisov, B., Nikishin, S. A., Holtz, M., Chu, S. N. G., and Temkin, H., phys. stat. sol. (a) 192, 286 (2002).Google Scholar
11. Bykhovski, A. D., Gelmont, B. L., and Shur, M. S., J. Appl. Phys. 78, 3691 (1995).Google Scholar
12. Kuryatkov, V., Zhu, K., Borisov, B., Chandolu, A., Gerasoiu, Iu., Kipshidze, G., Chu, S. N. G., Holtz, M., Kudryavtsev, Yu., Asomoza, R., Nikishin, S. A., and Temkin, H., Appl. Phys. Lett., (submitted).Google Scholar
13. Kipshidze, G., Kuryatkov, V., Borisov, B., Kudryatsov, Yu., Asomoza, R., Nikishin, S. A., and Temkin, H., Appl. Phys. Lett. 80, 2910 (2002).Google Scholar
14. Smith, S. A., Wolden, C. A., Bremser, M. D., Hanser, A. D., Davis, R. F., and Lampert, W. V., Appl. Phys. Lett. 71, 3631 (1997).Google Scholar
15. Pearton, S. J., Zolper, J. C., Shul, R. J., and Ren, F., Appl. Phys. Lett. 86, 77 (1999).Google Scholar
16. Cho, Hyun, Vartuli, C. B., Donovan, S. M., Abernathy, C. R., Pearton, S. J., Shul, R. J., and Constantine, C., J. Vac. Sci. Technol. A 16, 1631 (1998).Google Scholar
17. Zhu, K., Kuryatkov, V., Borisov, B., Kipshidze, G., Nikishin, S. A., Temkin, H., and Holtz, M., Appl. Phys. Lett. (in press) 2002.Google Scholar