Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T12:15:49.348Z Has data issue: false hasContentIssue false

Preparation Of Crystalline Chromium Carbide Thin Films Synthesized By Pulsed Nd:YAG Laser Deposition

Published online by Cambridge University Press:  10 February 2011

Kazuya Doi
Affiliation:
Department of Electrical Engineering, Sasebo National College of Technology, Okishin 1-1, Sasebo, Nagasaki 857-1193, Japan
Satoshi Hiraishi
Affiliation:
Department of Electrical Engineering, Sasebo National College of Technology, Okishin 1-1, Sasebo, Nagasaki 857-1193, Japan
Hiroharu Kawasaki
Affiliation:
Department of Electrical Engineering, Sasebo National College of Technology, Okishin 1-1, Sasebo, Nagasaki 857-1193, Japan
Yoshiaki Suda
Affiliation:
Department of Electrical Engineering, Sasebo National College of Technology, Okishin 1-1, Sasebo, Nagasaki 857-1193, Japan
Get access

Abstract

Chromium carbide thin films are synthesized on Si(100) substrates by a pulsed Nd:YAG laser deposition (PLD) method as parameters of methane gas pressure. Glancing-angle X-ray diffraction patterns show that the film prepared by PLD method is a polycrystalline thin film composed of Cr3C2and Cr7C3, even in the base pressure. Diffraction patterns, however, are depended on the methane gas pressure. Grain size of the prepared film increases with increasing methane gas pressure. One of the reasons of these phenomena may be considered to the phase reaction between the ablated species, such as Cr, CrCx and CH4gas in the plasma plume.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Klar, E.: Metal Handbook, (American Society for Metals, Metal Park, Ohio, June, 1984) 9th ed., Vol. 7, p. 804.Google Scholar
2) Isozaki, K., Hirayama, Y. and Imamura, Y.: US Patent 492 (1990) 7791.Google Scholar
3) Donley, M. S., Zabinski, J. S., Sessler, W. J., Dyhouse, V. J., Walck, S. D. and McDevitt, N. T.: Mater. Res. Soc. Symp. Proc. 236 (1992) 461.Google Scholar
4) Suda, Y., Kawasaki, H., Terajima, R. and Emura, M.: Jpn. J. Appl. Phys. 38 (1999) 3619.Google Scholar
5) Suda, Y., Nakazono, T., Ebihara, K. and Baba, K.: Thin Solid Films 281–282 (1996) 324.Google Scholar
6) Suda, Y., Nakazono, T., Ebihara, K. and Baba, K.: Nucl. Instrum. & Methods in Phys. Res. B121 (1997) 396.Google Scholar
7) Suda, Y., Nakazono, T., Ebihara, K., Baba, K. and Hatada, H.: Mater. Chem. & Phys. 54 (1998) 177.Google Scholar
8) Suda, Y., Kawasaki, H., Terajima, R., Emura, M., Baba, K., Abe, H., Yoshida, H., Ebihara, K. and Aoqui, S.: Korea, J.. Phys. Soc. 35 (1999) S88.Google Scholar
9) Suda, Y., Nakazono, T., Ebihara, K., Baba, K. and Aoqui, S.: Carbon 36 (1998) 771.Google Scholar
10) Suda, Y., Kawasaki, H., Terajima, R. and Emura, M.: Jpn. J. Appl. Phys. 38 (1999) 3619.Google Scholar
11) Murakami, K., Asako, H., Okamoto, T. and Miyamoto, Y.: Mater. Sci. Eng. A123 (1990) 261.Google Scholar