Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T05:46:09.110Z Has data issue: false hasContentIssue false

Preparation of AlN thin films by means of CVD using iodide source under atmospheric pressure

Published online by Cambridge University Press:  01 February 2011

Hiroki Iwane
Affiliation:
[email protected], Shizuoka University, Materials Science and Chemical Engineering, 3-5-1 Johoku, Hamamatsu, 4328003, Japan
Naoki Wakiya
Affiliation:
[email protected], Shizuoka University, Materials Science and Chemical Engineering, 3-5-1 Johoku, Hamamatsu, 4328003, Japan
Naonori Sakamoto
Affiliation:
[email protected], Shizuoka University, Materials Science and Chemical Engineering, 3-5-1 Johoku, Hamamatsu, 4328003, Japan
Takato Nakamura
Affiliation:
[email protected], Shizuoka University, Materials Science and Chemical Engineering, 3-5-1 Johoku, Hamamatsu, 4328003, Japan
Hisao Suzuki
Affiliation:
[email protected], Shizuoka University, Materials Science and Chemical Engineering, 3-5-1 Johoku, Hamamatsu, 4328003, Japan
Get access

Abstract

Epitaxial aluminum nitride (AlN) thin films were successfully prepared on the (0001) sapphire substrate by chemical vapor deposition (CVD) using aluminum iodide (AlI3) and ammonia (NH3) under atmospheric pressure at 750 ºC. The crystallographic relationship between AlN thin films and Al2O3 substrate is in the following; AlN(0001)//Al2O3(0001) and AlN[1010]//Al2O3[1120]. Lattice parameters of AlN thin film measured by X-ray diffraction revealed that c=0.498 and a=0.311 nm, respectively. Residual stress estimated by modified sin2ψ method was 0.38 GPa in compressive stress. Cross-sectional TEM observation revealed that an interlayer lies between the AlN films and the sapphire substrate. It was suggested that relaxation of residual stress caused by the mismatching of lattice parameter and thermal expansion coefficient was brought about by the interlayer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Akasaki, I., Amano, H., Jpn. J. Appl. Phys. 36, 5393 (1997).Google Scholar
2. Slack, G. A., Tanzilli, R. A., Pohl, R. O., Vandersande, J. W., J. Phys. Chem. Solids 48, 641 (1987)10.1016/0022-3697(87)90153-3Google Scholar
3. Kumagai, Y., Nagashima, T., Koukitu, A., Jpn. J. Appl. Phys. 46, L389 (2007).Google Scholar
4. Mei, J., Ponce, F. A., Fareed, R. S. Qhalid, Yang, J. W., Khan, M. Asif, Appl. Phys. Lett. 90, 221909 (2007).Google Scholar
5. Takahashi, N., Matsumoto, Y., Nakamura, T., J. Phys. Chem. Solids 67, 655 (2006).Google Scholar
6. Yoshioka, M., Takahashi, N., Nakamura, T., Mater. Chme. Phys. 86, 74 (2004).Google Scholar
7. Kaya, K., Takahashi, H., Shibata, Y., Kanno, Y., Hirai, T., Jpn. J. Appl. Phys. 36, 2837 (1997).Google Scholar
8. Yim, W. M., Stofko, E. J., Zanzucchi, P. J., Pankove, J. I., Ettenberg, M., Gilbert, S. L., J. Appl. Phys. 44, 292 (1973).Google Scholar
9. Paduano, Q., Weyburne, D., Jpn. J. Appl. Phys. 42, 1590 (2003).Google Scholar
10. Raghavan, S., Redwing, J. M., J. Appl. Phys. 96, 2995 (2004).Google Scholar
11. Perez, J. Z., Munuera, C., Ocal, C., Sanjose, V. M., J. Crystal Growth 271, 223 (2004).Google Scholar
12. Tsujisawa, K., Kishino, S., Li, D. B., Miyake, H., Hiramatsu, K., Shibata, T., and Tanaka, M., Jpn. J. Appl. Phys. 46, L552 (2007).Google Scholar
13.JCPDS-ICDD, Powder Diffraction File No.25-1133 (wurtzite AlN).Google Scholar
14. Uchida, H., Kiguchi, T., Saiki, A., Wakiya, N., Ishizawa, N., Shinozaki, K., Mizutani, N., J. Ceram. Soc. Jpn. 107, 606 (1999).Google Scholar
15. Pantha, B. N., Nepal, N., T. M. Al Tahtamouni, Nakarmi, M. L., Li, J., Lin, J. Y., and Jiang, H. X., Appl. Phys. Lett. 91, 121117 (2007).Google Scholar