Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T09:34:13.885Z Has data issue: false hasContentIssue false

Preparation, Deformation and Fracture of Stoichiometric NiAl Single Crystals

Published online by Cambridge University Press:  15 February 2011

W. Löser
Affiliation:
Institut für Festkörper und Werkstofforschung Dresden, Institut für Metallische Werkstoffe, P.O. Box 27 0016, D-01171 Dresden, F.R., Germany
A. Köthe
Affiliation:
Institut für Festkörper und Werkstofforschung Dresden, Institut für Metallische Werkstoffe, P.O. Box 27 0016, D-01171 Dresden, F.R., Germany
G. Vaerst
Affiliation:
Institut für Festkörper und Werkstofforschung Dresden, Institut für Metallische Werkstoffe, P.O. Box 27 0016, D-01171 Dresden, F.R., Germany
A. Güth
Affiliation:
Institut für Festkörper und Werkstofforschung Dresden, Institut für Metallische Werkstoffe, P.O. Box 27 0016, D-01171 Dresden, F.R., Germany
Get access

Abstract

A modified Bridgman method involving vacuum treatment prior to the growth process was developed for preparation of high-accuracy stoichiometric NiAl crystals. Single crystals with stoichiometry deviations < 0.2 wt.% Ni characterized by residual resistance ratios R298K/R4.2K > 4 have been prepared. An improved gravimetric analysis ensured the best accuracy among the various wet chemical analysis methods tested and a total error less than 0.1 at.% for Ni determination in NiAl. The stoichiometric NiAl single crystals exhibit high compressive strain in <123> crystallographic axis of the order of 20 % in the as-grown state and 40 % after annealing 1 h at 1073 K. The critical resolved shear stress was reduced from 104 MPa to 45 MPa by annealing. In 3-point bend tests tensile strains to failure up to 10 % have been achieved. Microscopic oxide inclusions near the sample surface were identified as the cause of crack initiation in bent samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Darolia, R., J. Met 43, 44 (1991).Google Scholar
2. Noebe, R.D., Bowman, R.R., and Nathal, M.V., Int. Mater. Rev. 38, 198 (1993).Google Scholar
3. Weaver, M.L. Kaufman, M. J., Noebe, R.D., Scripta Metall. Mater. 29, 1113 (1993).Google Scholar
4. Darolia, R., Lahrman, D., and Field, R.D., Scripta Metall. Mater. 26, 1007 (1992).Google Scholar
5. Hack, J.E., Brezeski, J.M., Darolia, R., Scripta Metall. Mater. 27, 1259 (1992).Google Scholar
6. Levit, V.I., Bul, I.A., Hu, J., and Kaufman, M.J., Scripta Metall. Mater. 34, 1925 (1996).Google Scholar
7. Darolia, R., Walston, W.S., Intermetallics 4, 505 (1996)Google Scholar
8. Vaerst, G., PhD thesis, Technische Universität Dresden, 1996.Google Scholar
9. Vaerst, G., Löser, W., Elefant, D., Kucharkowski, R., Michel, W. (unpublished)Google Scholar
10. Köthe, A., Löser, W., Güth, A., Vaerst, G., Mai, K., J. de Physique IV 5, C7111 (1995).Google Scholar
11. Yamaguchi, Y., Aoki, T., Britain, J. O., J. Phys. Chem. Solids, 31 1325 (1970).Google Scholar
12. Löser, W., Vaerst, G., Köthe, A., Güth, A., Oswald, S., Phys. Stat. Sol. (a) (in press)Google Scholar