Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T15:10:46.552Z Has data issue: false hasContentIssue false

Preparation and Time Resolved Photoluminescence of Nanoscale InP Islands in In0.48Ga0.52P

Published online by Cambridge University Press:  15 February 2011

K. Eberl
Affiliation:
Max Planck Institut FKF, PO Box 800665, D-70506 Stuttgart, (Germany)
A. Kurtenbach
Affiliation:
Max Planck Institut FKF, PO Box 800665, D-70506 Stuttgart, (Germany)
K. HÄusler
Affiliation:
Max Planck Institut FKF, PO Box 800665, D-70506 Stuttgart, (Germany)
F. Noll
Affiliation:
Max Planck Institut FKF, PO Box 800665, D-70506 Stuttgart, (Germany)
W.W. RÜhle
Affiliation:
Max Planck Institut FKF, PO Box 800665, D-70506 Stuttgart, (Germany)
Get access

Abstract

Nanoscale InP islands are formed during InP/In0 48Ga0.52P heteroepitaxy due to the lattice mismatch of about 3.7%. The samples are prepared by solid source molecular beam epitaxy on (001) GaAs substrate. Atomic force microscopy measurements show that the size of the islands is typically 15 to 50 nm in diameter and about 5 to 10 nm high depending on the nominally deposited InP layer thickness, which is between 1 and 7.5 monolayers. Transmission electron micrographs show the coherent incorporation into the In0.48Ga0.52P matrix for InP islands with 2.5 monolayers. Resonantly excited time-resolved photoluminescence (PL) measurements of the self assembling InP dots are performed for optical characterisation. The decay times are typically 400 ps. The dependence on excitation power and temperature indicates the quantum dot nature of the InP islands. Finally a pronounced alignment of the InP islands is obtained on strained In0.61Ga0.39P buffer layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

1. “Low dimensional structures prepared by epitaxial growth or regrowth on patterned substrates”, editors: Eberl, K., Petroff, P.M., Demeester, P., NATO ASI Series, Kluver, Dortrecht, 1995.Google Scholar
2. Guha, S., Madhukar, A., and Rajkumar, K.C., Appl. Phys. Lett. 57, 2110 (1990).Google Scholar
3. Petroff, P.M. and DenBaars, S. P., Supperlattices and Microstructures 15, 15 (1994).Google Scholar
4. Madhukar, A., Xie, Q., Chen, P. and Konkar, A., Appl. Phys. Lett. 64, 2727 (1994).Google Scholar
5. Marzin, J.-Y., Gérard, J.-M., Izrael, A. and Barrier, D., Phys. Rev. Lett. 73, 716 (1994).Google Scholar
6. Leonard, D., Krishnamurthy, M., Reves, C. M., Denbaars, S. P. and Petroff, P.M., Appl. Phys. Lett. 63, 3203 (1993).Google Scholar
7. Nötzel, R., Temmyo, J., and Tamamura, T., Nature 369,131 (1994).Google Scholar
8. Grundmann, M., Ledentsov, N.N., Heitz, R., Eckey, L., Christen, J., Bimberg, D..Ruvimov, S.S., Werner, P., Richter, U., Heydenrich, J., Ustinov, V.M., Egorov, A.Y., Zhukov, A.E., Kopev, P.S., Alferov, Z.I., Physica Status Solidi B, 188 (1995).Google Scholar
9. Ahopelto, J., Yamaguchi, A.A., Nishi, K., Usui, A. and Sakaki, H., Jpn. J. Appl. Phys. 32, L32 (1993).Google Scholar
10. Seifert, W., Carlsson, N., Castrillo, P., Peterson, A., Pistol, M.E., Samuelson, L., Appl. Phys. Lett. 65, 3093 (1994).Google Scholar
11. Reaves, C.M., Bressler-Hill, V., Krishanmurthy, M., Varma, S., Petroff, P.M., Weinberg, W.H. and DenBaars, S.P., Proceedings of 6th Intern. InP and Related Materials.Conference 1994.Google Scholar
12. Shitara, T. and Eberl, K., Appl. Phys. Lett. 65, 356 (1994).Google Scholar
13. Kurtenbach, A., Eberl, K. and Shitara, T., Appl. Phys. Lett. 66, 361 (1995).Google Scholar
14. Citrin, D. S., Superl. and Microstruct. 13, 303 (1993).Google Scholar
15. Wang, G. et al. , Appl. Phys. Lett. 64, 2815 (1994).Google Scholar
16. Yamaguchi, A. A. et al. , in Proceedings of the 19th International Symposium on GaAs and Related Compounds, Karuizawa, 1992, edited by Ikegami, T., Hasegawa, F., and Takeda, Y. (IOP, London, 1993), p. 341.Google Scholar
17. Feldmann, J. et al. , Phys. Rev. Lett. 59, 2337 (1987).Google Scholar
18. Colocci, M. et al. , Europhys. Lett. 12, 417 (1990).Google Scholar
19. Kurtenbach, A., Ruihle, W.W. and Eberl, K., subm. for publ.Google Scholar
20. Leonard, D., Pond, K. and Petroff, P.M., Phys. Rev. B 15, 50, 11687 (1994).Google Scholar
21. Mui, D., Leonard, D., Merz, J.L. and Petroff, P.M., Appl.. Phys. Lett. 66, 1620 (1995).Google Scholar
22. , Oshinowo, Tsukamoto, S., Nishioka, M. and Arakawa, Y., Appl. Phys. Lett. 64, 1221 (1994)Google Scholar
23. NtStzel, R. et al. Appl. Phys. Lett. 65, 2854 (1994).Google Scholar
24. Madukar, A., Chen, P., Xie, Q., Konkar, A., Ramachandran, T.R., Kobayashi, N. P. and Viswanathan, R., in Ref. [1].Google Scholar
25. Vescan, L., Jäiger, W., Dieker, C., Schmidt, K., Hartmann, A. and Lüith, H., Mat. Res. Soc. Symp. Proc. 263, 23 (1992).Google Scholar
26. Yoon, S.F., Thin Solid Films, 223, 320 (1993). and D. E. Jesser et al., Phys. Rev. Lett. 71,1744 (1993)Google Scholar
27. Kurtenbach, A., Eberl, K., Jin-Phillipp, N.Y. and Noll, F., subm. to J. Electronic Materials.Google Scholar