Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T11:26:34.785Z Has data issue: false hasContentIssue false

Preparation and Photocatalytic Properties of TiO2/SiO2 Composite Nanofibers

Published online by Cambridge University Press:  01 February 2011

Sung Wook Lee
Affiliation:
[email protected], Doobon Inc., Center for Research and Development, Cheongwon-gun, 363-893, Korea, Republic of
Tae Ho Lim
Affiliation:
[email protected], Doobon Inc., Center for Research and Development, Cheongwon-gun, 363-893, Korea, Republic of
Sang Beom Kim
Affiliation:
[email protected], Doobon Inc., Center for Research and Development, Cheongwon-gun, 363-893, Korea, Republic of
Dong Ho Hyun
Affiliation:
[email protected], Doobon Inc., Center for Research and Development, Cheongwon-gun, 363-893, Korea, Republic of
Get access

Abstract

(1-x)SiO2/(x)TiO2 composite micro/nano scale fibers with various compositions were successfully prepared by electrospinning their sol-gel precursors of titanium(IV) isopropoxide(TiP), and tetraethyl orthosilicate(TEOS), followed by calcinations. Any gelator or binder was not used in this direct preparation process for composite fibers. The surface morphology and structure of sintered composite fibers were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and Fourier transform infrared (FT-IR). The crystallization behavior and surface morphology of the as-spun fibers were largely influenced by the calcination temperature and the content of TiO2. The photocatalytic activity of SiO2/TiO2 composite fibers was examined by UV-DRS spectra. The experiments demonstrated that the MB in aqueous solution was successfully photodegraded using SiO2/TiO2 composite nanofibers under UV-visible light irradiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Yang, P., Lieber, C. M., J. Mater. Res. 12 (1997) 2981.Google Scholar
[2] Pan, Z. W., Dai, Z. R., Wang, Z. L., Science 291 (2001) 1947.Google Scholar
[3] Huang, M. H., Weber, E., Yang, P., Adv. Mater. 13 (2001) 113.Google Scholar
[4] Zhang, H. Z., Kong, Y. C., Wang, T. Z., Feng, S. Q., Solid State Commun. 109 (1999) 677.Google Scholar
[5] Dai, Z. R., Pan, Z. W., Wang, Z. L.,Solid State Commun. 118 (2001) 351.Google Scholar
[6] Hu, J., Odom, T. W., Lieber, C. M., Acc. Chem. Res. 32 (1999) 435.Google Scholar
[7] Spanhel, L., Weller, H., Henglein, A., J. Am. Chem. Soc. 109 (1987) 6632.Google Scholar
[8] Gopias, K. R., Bohorquez, M., Kamat, P. V., J. Phys. Chem. 94 (1990) 6435.Google Scholar
[9] Idriss, B., Kamat, P. V., J. Phys. Chem. 99 (1995) 9182.Google Scholar
[10] Vinodgopal, K., Kamat, P. V., Environ. Sci. Tech. 29 (1995) 841.Google Scholar
[11] Engweiler, J., Harf, J., Baiker, A., J. Catal. 159 (1996) 259.Google Scholar
[12] Pen, S. P., Meng, G. W., Zhang, L. D., Chin. Sci. Bull. 43 (1998) 1613.Google Scholar
[13] Fu, X. Z., Louis, A. C., Yang, Q., Anderson, M. A., Environ. Sci. Tech. 30 (1996) 647.Google Scholar
[14] Gunji, T., Kasahara, T., Abe, Y., J. Sol-Gel Sci. Tech. 13 (1998) 957.Google Scholar
[15] Dai, L., Chen, X. L., Xhou, T., Hu, B. Q., J. Phys.: Condens. Matter. 14 (2002) L473.Google Scholar
[16] Andrianainarivelo, M., Corriu, R., Leclercq, D., Mutin, P. H., Vioux, A., J. Mater. Chem. 6(10) (1996)1665.Google Scholar
[17] Lee, S. W., Condrate, R. A. Sr, J. Mater. Sci. 23 (1988) 2951.Google Scholar
[18] Segawa, H., Fukuyoshi, J., Tanaka, K., Yoshida, K., J. Mat. Sci. Lett. 22 (2003) 687.Google Scholar