Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T17:32:22.826Z Has data issue: false hasContentIssue false

Preparation and Characterization of Wurtzitic Gan Single Crystals in Nano and Micro Scale

Published online by Cambridge University Press:  15 February 2011

San Yu
Affiliation:
National Laboratory of Super Hard Materials, Jilin University, Changchun 130023, P.R. China, [email protected]
Hongdong Li
Affiliation:
National Laboratory of Super Hard Materials, Jilin University, Changchun 130023, P.R. China, [email protected]
Haibin Yang
Affiliation:
National Laboratory of Super Hard Materials, Jilin University, Changchun 130023, P.R. China, [email protected]
Dongmei Li
Affiliation:
National Laboratory of Super Hard Materials, Jilin University, Changchun 130023, P.R. China, [email protected]
Haiping Sun
Affiliation:
National Laboratory of Super Hard Materials, Jilin University, Changchun 130023, P.R. China, [email protected]
Guangtian Zou
Affiliation:
National Laboratory of Super Hard Materials, Jilin University, Changchun 130023, P.R. China, [email protected]
Get access

Abstract

Gallium nitride and its alloys are the most promising materials for short wave light emitters. If high quality GaN single crystals can be prepared, the GaN base light emitters should be fabricated directly on the lattice-matched GaN substrate.

In this work, GaN crystals in nano and micro scale with definite faces have been prepared by dc arc discharge using gallium and N2+NH3 as starting materials. Transmission electron microscope, selected area diffraction, x-ray microanalysis of energy dispersive spectroscopy, and x-ray diffraction investigation of the as grown GaN crystals show that the well faceted crystals are single crystalline GaN in wurtzite structure having lattice constants a0=3.18Å and c0=5.18Å. The crystal size of stoichoimetric GaN in wurtzite structure depends on the partial pressure of nitrogen in the plasma. The maximum crystal size in this work is about several micrometers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Strike, S. and Morocco, H., J. Va. Sci. Technol., B10, p. 12 37 (1992).Google Scholar
2. Davis, R. F., Proc. IEEE 79, p. 702 (1991).Google Scholar
3. Pankove, J. I., MRS Symp. Proc. 162, p. 515 (1990).Google Scholar
4. Maruska, H. P., and Tietjen, J. J., Appl, Phys. Lett. 15, p. 327 (1969).Google Scholar
5. Sasaki, T. and Zembutsu, S., J. Appl. Phys. 61, p. 2533 (1986).Google Scholar
6. Sitar, Z., Paisley, M. J., Yan, B., and Davis, R. F., MRS Symp. Proc. 162, p. 537 (1990).Google Scholar
7. Zembutsu, S., Sasaki, T., Appl. Phys. Lett. 48, p. 870 (1986).Google Scholar
8. Humphreys, T. P., Sukov, C. A., Nemanich, R. J., Posthil, J. B., Rudder, R. A., Hattangady, S. V., and Markunas, R. J., MRS Symp. Proc. 162, p. 531 (1990).Google Scholar
9. Newman, N., Fu, T. C., Liu, X., Liliental-weber, Z., Rubin, M., Chan, J. S., Jones, E., Ross, J. T., Tidswell, I., Yu, K. M., Cheungand, N. Weber, E. R., Mat. Res. Symp. Proc. 339, p. 483 (1994).Google Scholar
10. Perlin, P., Gorczyca, J., Christensen, N. E., Grzegory, T., Teisseyve, H. and Suski, T., Phys. Rev. B 45, p. 13307 (1992).Google Scholar
11. Karpinski, J., Jun, J. and Porowaski, S., J. Crystal Growth, 66, p. 1 (1984).Google Scholar