Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T09:35:07.409Z Has data issue: false hasContentIssue false

Preparation and Characterization of Silicon Nanocrystals in a SiO2 Matrix and Study of Suboxide Stability

Published online by Cambridge University Press:  15 February 2011

B. J. Hinds
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695–8202
A. Banerjee
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695–8202
R. S. Johnson
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695–8202
G. Lucovsky
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695–8202
Get access

Abstract

The kinetics of the decomposition of silicon suboxides (SiOx, x<2) to Sic + SiO2 was studied as a function of composition and post-deposition annealing. Amorphous hydrogenated SiOx films (0.8<x<1.4) were deposited by remote plasma enhanced chemical vapor deposition (RPECVD) and rapid thermal annealed (RTA) at temperatures of 500–1000°C. By monitoring the Si-O infra-red (IR) bond-stretch mode frequency, it was found that at temperatures below 850°C, or at a oxygen poor composition near SiO0.8, the decomposition reaction only proceeded to a metastable form of SiO1.6 + Si. Characterization by Raman and spectroscopie ellipsometry confirm similar trends. Cross sectional transmission electron microscopy (TEM) confirms that Si nanocrystals (Sine) are formed with anneals at 900°C (30 sec). As deposited suboxides show band edge photoluminescence at 1.6 eV which disappears upon annealing at 900°C, indicating a sharp suboxide free interface between Sinc and SiO2 matrix.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Texas Instrument Incorporated, MS 944, Dallas TX 75243

References

REFERENCES

[1]Grunthaner, F.J. and Grunthaner, P.J., Mater. Science Reports 1, 65 (1986).Google Scholar
[2]Hatttori, T. and Suzuki, T., Appl. Phys. Lett. 43, 470 (1983).Google Scholar
[3]Brewer, L. and Edwards, R.K., J. Electrochemical Soc. 58, 351, (1954).Google Scholar
[4]Coleman, M.V. and Thomas, D.J.D., Phys. Stat. Sol. 22, 593 (1967).Google Scholar
[5]Brady, G.W., J. Electrochemical Soc. 63, 1119 (1959).Google Scholar
[6]Hamasaki, M., Adachi, T., Wakayama, S., and Kikuchi, M., J. Appl. Phys. 49, 3987 (1978).Google Scholar
[7]Thomas, J.H. III, and Goodman, A.M., J. Electrochemical Soc. 126, 1766 (1979).Google Scholar
[8]Liday, J., Tomek, S., and Breza, J., Appl. Surf. Sci. 99, 9 (1996).Google Scholar
[9]Shallenberger, J.R., J. Vac. Sci. Technol. A 14, 693 (1996).Google Scholar
[10]Greenberg, B. and Marshall, T., J. Electrochemical Soc. 135, 2295 (1979).Google Scholar
[11]Kragler, G., Bender, H., Willeke, G., Bucher, E., and Vanhellemont, J., Appl. Phys. A 58, 77 (1994).Google Scholar
[12]Catalano, M., Kim, M.J., Carpenter, R.W., Das Chowdhury, K., and Wong, J., J. Mater. Res. 8, 2893 (1993).Google Scholar
[13]Wong, J., Jefferson, D.A., Sparrow, T.G., Thomas, J.M., Milne, R.H., Howie, A., and Koch, E.F., Appl. Phys. Lett. 48, 65 (1986).Google Scholar
[14]Compagnini, G., Lombardo, S., Reitano, R., and Campisano, S.U., J. Mater. Res. 10, 885 (1995).Google Scholar
[15]Bruesch, P., Stockmeier, Th., Stucki, F., Buffat, P.A., and Linder, J.K.N., J. Appl. Phys. 73, 7690 (1993).Google Scholar
[16]Lucovsky, G., Lee, D.R., Hattangady, S.V., Niimii, H., Jing, Z., Parker, C., and Hauser, J.R., Jpn. J. Appl. Phys. 34, 6827 (1995).Google Scholar
[17]Pai, P.G., Chao, S.S., Takagi, Y., and Lucovsky, G., J. Vac. Sci. Tech. A 4, 689 (1986).Google Scholar
[18]Banerjee, A. and Lucovsky, G., in Amorphous Silicon Technology-1996, edited by Hack, M., Schropp, R., Schiff, E.A., Matsuda, A., and Wagner, S. (Mater. Res. Soc. Proc. 420, Pittsburgh, PA, 1996) in press.Google Scholar
[19]Banerjee, A., Ph.D. thesis, North Carolina State University (1996).Google Scholar
[20]Tsu, D.V., Parsons, G.N., Lucovsky, G., and Watkins, M.W., J. Vac, Sci. Technol. A 7, 1115 (1989).Google Scholar
[21]Aspnes, D.E. and Studna, A.A., Appl. Opt. 14, 220 (1975).Google Scholar
[22]Iqbal, Z., Vebrek, S., Webb, A.P., and Capezzuto, P., Solid State Comm. 37, 993 (1981).Google Scholar
[23]Fauchet, P.M., and Cambell, I.H., Critical Reviews in Solid State and Mater. Sci. 14, S79 (1988).Google Scholar
[24]Lucovsky, G., Galeener, F.L., Geils, R.H., and Keezer, R.C., in The Structure of Non-Crystalline Materials, edited by Gaskell, P.H. (Taylor & Francis LTD, London, 1977) p 127130.Google Scholar
[25]Aspnes, D.E., Kelso, S.M., Olson, C.G., and Lynch, D.W., Phys. Rev. Lett. 48, 1863 (1982).Google Scholar
[26]Paesler, M.A., Anderson, D.A., Freeman, E.C., Moddel, G., and Paul, W., Phys. Rev. Lett. 41, 1492 (1978).Google Scholar
[27]Osaka, Y., Tsunetomo, K., Toyomura, F., Myoren, H., and Kohno, K., Jpn. J. Appl. Phys. 31, L365 (1992).Google Scholar
[28]Shimizu-Iwayama, T., Fujita, K., Nakao, S., Saitoh, K., Fujita, T., and Itoh, N., J. Appl. Phys. 75, 7779 (1994)Google Scholar
[29]Shimizu-Iwayama, T., Niimi, T., Nakao, S., Saitoh, K., Fujita, T., and Itoh, N., J. Phys.: Conden. Matter 5, L375 (1993).Google Scholar
[30]Hayashi, S., Nagareda, T., Kanzawa, Y., and Yamamoto, K., Jpn. J. Appl. Phys. 32, 3840 (1993).Google Scholar