Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T04:21:05.105Z Has data issue: false hasContentIssue false

Preparation and Characterization of Pb2SnF6, The First Lead(II)-TIN(II) Fluoride that is a Superstructure of A-PbF2

Published online by Cambridge University Press:  11 February 2011

Raimondo Calandrino
Affiliation:
Laboratory of Solid State Chemistry and Mössbauer spectroscopy, Laboratories for Inorganic Materials, Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada
Anthony Collin
Affiliation:
Laboratory of Solid State Chemistry and Mössbauer spectroscopy, Laboratories for Inorganic Materials, Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada
Georges Dénés*
Affiliation:
Laboratory of Solid State Chemistry and Mössbauer spectroscopy, Laboratories for Inorganic Materials, Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada
Morgane Logiou
Affiliation:
Laboratory of Solid State Chemistry and Mössbauer spectroscopy, Laboratories for Inorganic Materials, Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada
M. Cecilia Madamba
Affiliation:
Laboratory of Solid State Chemistry and Mössbauer spectroscopy, Laboratories for Inorganic Materials, Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada
*
To whom all correspondence should be addressed: [email protected]
Get access

Abstract

All the known phases in the PbF2/SnF2 system have structures derived from the fluorite-type β-PbF2, and are either disordered, and therefore cubic, or ordered with lattice distortion and superstructures. In addition, they are the highest performance fluoride-ion conductors, with PbSnF4 being the very best. In this work, a new phase, Pb2SnF6 has been prepared and characterized. Contrary to the other lead(II) tin(II) fluorides known up to date, the structure of Pb2SnF6 is a superstructure of a-PbF2, instead of β-PbF2, with a large (4 × 4) bidimensional supercell. Pb2SnF6 is prepared by the reaction of a-PbF2 with an aqueous solution of SnF2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

2

In partial fulfillment of the requirements for the DUT, I.U.T. de Lannion, Université de Rennes I, Lannion, France

References

REFERENCES

1. Donaldson, J. D. and Senior, B. J., J. Chem. Soc. (A), 1821 (1967).Google Scholar
2. Dénès, G., Pannetier, J., and Lucas, J., C. R. Acad. Sc. Paris 280C, 831 (1975).Google Scholar
3. Pannetier, J., Dénès, G. and Lucas, J., Mat. Res. Bull. 14, 627 (1979).Google Scholar
4. Dénès, G., J. Sol. State Chem. 74, 343 (1988).Google Scholar
5. Dénès, G., Proc. Second Nassau Mössbauer Conf., ed : Wynter, C. I. and Alp, E. E., W. C. Brown Publishers, 109 (1994).Google Scholar
6. Dénès, G., Madamba, M. C. and Parris, J. M., Solid State Ionics IV, Mater. Res. Soc. Symp. Proc. 369, 463(1995).Google Scholar
7. Dénès, G., Madamba, M. C. and Milova, G., Thermodynamics and Kinetics of Phase Transformations, Mater. Res. Soc. Symp. Proc. 398, 525 (1996).Google Scholar
8. Dénès, G. and Madamba, M. C., Mater. Struct. Chem. Bio. Phys. Tech. 3, 246 (1996).Google Scholar
9. Calandrino, R., Collin, A., Dénès, G., Madamba, M. C. and Parris, J. M., Solid State Chemistry of Inorganic Materials, Mater. Res. Soc. Symp. Proc. 453, 585 (1997).Google Scholar
10. Dénès, G., Le Roux, D. and Madamba, M. C., Phase Transformations and Systems Driven Far from Equilibrium, Mater. Res. Soc. Symp. Proc. 481, 667 (1998).Google Scholar
11. Dénès, G., Madamba, M. C., Muntasar, A., Peroutka, A., Tam, K. and Zhu, Z., Mössbauer Spectroscopy in Materials Science, ed: Miglierini, M. and Petridis, D., NATO Science Series, 3. High Technology, Vol. 66, Kluwer, Dordretch (Netherlands), 39 (1998).Google Scholar
12. Dénès, G., Madamba, M. C. and Muntasar, A., Solid State Chemistry of Inorganic Materials II, Mater. Res. Soc. Symp. Proc. 547, 371 (1999);Google Scholar
Dénès, G., Madamba, M. C. and Muntasar, A., Solid State Chemistry of Inorganic Materials II, Mater. Res. Soc. Symp. Proc. 547, 377 (1999).Google Scholar
13. Dénès, G., Milova, G. and Antonov, B. D., Solid State Ionics V, Mater. Res. Soc. Symp. Proc. 548, 485 (1999).Google Scholar
14. Collin, A., Dénès, G., Le Roux, D., Madamba, M. C., Parris, J. M. and Salaün, A., Intern. J. Inorg. Mater. 1, 289 (1999).Google Scholar
15. Birchall, T., Dénès, G., Ruebenbauer, K. and Pannetier, J., Hyperf. Inter. 29, 1331 (1986).Google Scholar
16. Dénès, G., Yu, Y.H., Tyliszczak, T. and Hitchcock, A.P., J. Solid State Chem. 91, 1 (1991).Google Scholar
17. Dénès, G., Yu, Y.H., Tyliszczak, T. and Hitchcock, A.P., J. Solid State Chem. 104, 239 (1993).Google Scholar
18. Dénès, G. and Madamba, M. C., Phase Transformations and Systems Driven Far from Equilibrium, Mater. Res. Soc. Symp. Proc. 481, 673 (1998).Google Scholar