Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T05:05:26.675Z Has data issue: false hasContentIssue false

Prediction of a Very Hard Triclinic Form of Diamond

Published online by Cambridge University Press:  10 February 2011

G. Benedek
Affiliation:
Istituto Nazionale di Fisica della Materia, Dipartimento di Fisica, Universita' di Milano, via Celoria 16, 1–20133 Milano (Italy)
M. Facchinetti
Affiliation:
Istituto Nazionale di Fisica della Materia, Dipartimento di Fisica, Universita' di Milano, via Celoria 16, 1–20133 Milano (Italy)
L. Miglio
Affiliation:
Istituto Nazionale di Fisica della Materia, Dipartimento di Fisica, Universita' di Milano, via Celoria 16, 1–20133 Milano (Italy)
S. Serra
Affiliation:
Istituto Nazionale di Fisica della Materia, Dipartimento di Fisica, Universita' di Milano, via Celoria 16, 1–20133 Milano (Italy)
Get access

Abstract

In a theoretical search for new hypotetical sp3-bonded carbon structure containing five-fold rings as a possible result of fullerene transformation under pressure, we have found a triclinic form of diamond with 16 atoms per unit cell which we called tcl-16. We have calculated the ground state structure, the cohesive energy, the bulk modulus and the electronic density of states by means of tight binding molecular dynamics (TBMD). Finally we have compared the phonon spectra at F to existing Raman data for a non-cubic- phase of diamond.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Fahy, S. and Louie, S.G., Phys. Rev. B 36, 3373, (1987)Google Scholar
[2] Serra, S., Molteni, C. and Miglio, L., J.Phys.: Condens. Matter 7, 4019, (1995).Google Scholar
[3] Hoffman, R., Hughbanks, T., Kertesz, M., and Bird, P.H., J. Am. Chem. Soc. 105, 4831, 1983)Google Scholar
[4] Liu, A.Y. and Cohen, M. L., Phys. Rev. B 45, 5479, (1992)Google Scholar
[5] Liu, A.Y. and Cohen, M. L., and Hass, K.C., Tamor, M.A., Phys. Rev. B 43, 6742, (1991)Google Scholar
[6] Wells, A.F., Three-Dimensional Nets and Polyhedra, John Wiley & Sons, New York 1976 Google Scholar
[7] Murnaghan, F.D., Proc. Natl. Acad. Sci. U.S.A. 3, 244, (1944)Google Scholar
[8] Marvin Cohen, L., Phys. Rev. B 32, 7988, (1985)Google Scholar
[9] Kozlov, M.E., M.Hirabayashi, K.Nozaki, M.Tokumoto and H.Ihara, Appl. Phys. Lett. 66, 1199, (1995)Google Scholar
[10] Kozlov, M.E., Yase, K., Minami, N., Fons, P., Durand, H.A., Hirabayashi, M., Nozaki, K., Tokumoto, M. and Ihara, H., Proc ECS Meeting, (to be published)Google Scholar