Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T13:41:00.059Z Has data issue: false hasContentIssue false

Predicting Nonlinear Optical Properties of Delocalized Charge States in Polyenylic Chromophores and Dendrimers

Published online by Cambridge University Press:  15 February 2011

C. Dirk
Affiliation:
Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, [email protected]
C. Spangler
Affiliation:
Department of Chemistry and Biochemistry, Optical Technology Center, Montana State University, Bozeman, MT 59717
L. Madrigal
Affiliation:
Department of Chemistry and Biochemistry, Optical Technology Center, Montana State University, Bozeman, MT 59717
E. H. Elandaloussi
Affiliation:
Department of Chemistry and Biochemistry, Optical Technology Center, Montana State University, Bozeman, MT 59717
Get access

Abstract

Over the past several years there has been continuing interest in the design of highly conjugated monomers, oligomers and polymers for a variety of photonics applications dependent on a nonlinear response to intense laser radiation. Materials design criteria for these various applications depend on accurate structure-property relationships, and while these relationships can best be determined experimentally, computational approaches that can accurately predict trends in series are extremely useful in establishing target molecules having the desired photonic properties. We have recently reviewed the relationship between incorporation of polaronic or bipolaronic charge states in oligomeric or polymeric conjugation sequences' and enhanced third-order optical nonlinearity, particularly for finite-length polyenes. In this presentation we will focus on how these charge states can be stabilized by electron-donating substituents in dithienylpolyenes, and in model dendrimers based on bis(diphenylamino)stilbene repeat units, and illustrate why these criteria are important for the design of new optical limiting chromophores.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Spangler, C. W., Handbook of Conducting Polymers, 2d ed., Skotheim, T., Elsenbaumer, R., Reynolds, J.. Eds., Marcel Dekker, Inc. New York, 1998, pp. 743763.Google Scholar
2. Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials, Kuzyk, M., Dirk, C., Eds., Marcel Dekker, Inc., New York, 1998.Google Scholar
3. Dirk, C. W., Cheng, L-T., and Kuzyk, M. G., Int. J. Quant. Chem. 43, p. 27 (1992).Google Scholar
4. Spangler, C. W., Liu, P.-K., Dembek, A. A. and Havelka, K. O., J. Chem. Soc. Perkin Trans. 1, p. 799 (1991).Google Scholar
5. Spangler, C. W., Liu, P.-K. and Havelka, K. O., J. Chem. Soc. Perkin Trans 2, p. 1207 (1992).Google Scholar
6. Spangler, C. W. and Liu, P.-K., J. Chem. Soc. Perkin Trans. 2, p. 1959 (1992).Google Scholar
7. Spangler, C. W. and He, M. Q., J. Chem. Soc. Perkin Trans 1, p. 715 (1995).Google Scholar
8. Spangler, C. W., He, M. Q., Laquindanum, J., Dalton, L., Tang, N., Partanen, J. and Hellwarth, R., Mat. Res. Soc. Symp. Proc. 328, p. 655 (1994).Google Scholar
9. Tang, N., Partanen, J. P., Hellwarth, R. W., Laquindanum, J., Dalton, L. R., He, M. Q. and Spangler, C. W., Proc. SPIE 2285, p. 186 (1994).Google Scholar
10. deMelo, C. P. and Silbey, R., J. Chem. Phys. 88, p. 2558 (1988).Google Scholar
11. deMelo, C. P. and Silbey, R., J. Chem. Phys. 88, p. 2567 (1988).Google Scholar
12. Tallent, J. R., Birge, R. R., Spangler, C. W. and Havelka, K. O., Molecular Electronics-Science and Technology, Aviram, A., Ed., Am. Inst. Phys., New York, 1992, pp. 191203.Google Scholar
13. Madrigal, L. G., Spangler, C. W., Casstevens, M. K., Kumar, D., Weibel, J. and Burzynski, R., Polym. Prepr., 39(2), p. 1057 (1998).Google Scholar
14. Spangler, C. W., Faircloth, T., Elandaloussi, E. H. and Reeves, B., Mat. Res. Soc. Symp. Proc. 488, p. 283 (1998).Google Scholar
15. Spangler, C. W. and Elandaloussi, E. H., Polym. Prepr. 39(2), 1055 (1998).Google Scholar
16. Marder, S. R., Gorman, C. B., Meyers, F., Perry, J. W., Bourhill, G., Bredas, J.-L. and Pierce, B. M., Science, 265, p. 632 (1994).Google Scholar
17. Gorman, C. B. and Marder, S. R., Proc. Natl. Acad. Sci. USA 90, p. 11297 (1993).Google Scholar
18. Marder, S. R., Perry, J. W. Bourhill, G., Gorman, C. B., Tieman, B. G. and Mansour, K., Science, 261, p. 186 (1993).Google Scholar
19. Xie, O. and Dirk, C. W., J. Phys. Chem. B, 102, p. 9378 (1998).Google Scholar