Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T07:22:49.102Z Has data issue: false hasContentIssue false

Precipitation of Spinel Iron Oxide : Nanoparticle Size Control

Published online by Cambridge University Press:  10 February 2011

J. P. Jolivet
Affiliation:
Chimie de Ia Matiére Condensée, CNRS URA 1466, Université P. et M. Curie4, Place Jussieu, T. 54 E. 5, 75 252 Paris Cedex 05, France
L. Vayssieres
Affiliation:
Chimie de Ia Matiére Condensée, CNRS URA 1466, Université P. et M. Curie4, Place Jussieu, T. 54 E. 5, 75 252 Paris Cedex 05, France
C. Chaneac
Affiliation:
Chimie de Ia Matiére Condensée, CNRS URA 1466, Université P. et M. Curie4, Place Jussieu, T. 54 E. 5, 75 252 Paris Cedex 05, France
E. Tronc
Affiliation:
Chimie de Ia Matiére Condensée, CNRS URA 1466, Université P. et M. Curie4, Place Jussieu, T. 54 E. 5, 75 252 Paris Cedex 05, France
Get access

Abstract

The mean particle size of magnetite precipitated in aqueous solution can be adjusted and stabilized against ripening over a large nanometric range (1.5 to 12.5 nm) by controlling the pH and the ionic strength imposed by a non-complexing salt in the precipitation medium. The higher the pH and the ionic strength are, the smaller the particle size is. An explanation for this phenomenon is based on the lowering of the oxide-solution interracial tension due to the surface electrostatic charge increase. A critical pH value corresponding to the saturation of the interface is defined and calculated. When the precipitation is effected above this critical pH value, the spontaneous decrease in surface area by ripening is avoided and, for a given ionic strength, the particle size depends only on the acidity. This model correlates well with the experimental results. This provides the first experimental example of thermodynamic stabilization of oxide nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nanophase Materials. Synthesis, Properties, Applications, edited by Hadjipanayis, G. C. and Siegel, R. W., NATO ASI Series, Applied Sciences, Vol. E 260, (Kluwer Academic Publishers, Dordrecht, 1993).Google Scholar
2. Dormann, J. L., Fiorani, D., Tronc, E., Adv. Chem. Phys. 1996in the press.Google Scholar
3. Nielsen, A. E., Kinetics of Precipitation, (Pergamon Press, Oxford, 1964), pp. 108116.Google Scholar
4. Sugimoto, T., Adv. Colloid Interface Sci. 28, 65 (1987).Google Scholar
5. Overbeek, J. Th. G., Faraday Disc. Chem. Soc. 65, 7 (1978).Google Scholar
6. Aveyard, R., Chem. Ind. 474 (1987).Google Scholar
7. Jolivet, J. P., Belleville, P., Tronc, E., Livage, J., Clays Clay Miner. 40, 531 (1992).Google Scholar
8. Jolivet, J. P., Tronc, E., J. Colloid Interface Sci. 125, 688 (1988).Google Scholar
9. Chanéac, C., Vayssières, L., Tronc, E., Jolivet, J.P., to be published.Google Scholar
10. Guinier, A., Thdorie et Technique de la Radiocristallographie, (Dunod, Paris, 1956), pp. 462488.Google Scholar
11. Stol, R. J., De Bryun, P. L., J. Colloid Interface Sci. 75, 185 (1980).Google Scholar
12. Jolivet, J. P., Vayssières, L., Tronc, E., submitted to J. Colloid Interface Sci.Google Scholar
13. Ahmed, S. M., Can. J. Chem. 44, 1663 (1966) ; J. Phys. Chem. 73, 3546 (1969).Google Scholar
14. Jolivet, J. P., Vayssières, L., Tronc, E., to be published.Google Scholar