Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T16:59:38.042Z Has data issue: false hasContentIssue false

Precipitates Caused in Silicon Wafers by Prolonged High-Temperature Annealing in Nitrogen Atmosphere

Published online by Cambridge University Press:  17 March 2014

Haruo Nakazawa
Affiliation:
Corporate R&D Headquarters, Fuji Electric Co., Ltd., 4-18-1 Tsukama, Matsumoto, Nagano 390-0821, Japan
Masaaki Ogino
Affiliation:
Corporate R&D Headquarters, Fuji Electric Co., Ltd., 4-18-1 Tsukama, Matsumoto, Nagano 390-0821, Japan
Hideaki Teranishi
Affiliation:
Corporate R&D Headquarters, Fuji Electric Co., Ltd., 4-18-1 Tsukama, Matsumoto, Nagano 390-0821, Japan
Yoshikazu Takahashi
Affiliation:
Corporate R&D Headquarters, Fuji Electric Co., Ltd., 4-18-1 Tsukama, Matsumoto, Nagano 390-0821, Japan
Hitoshi Habuka
Affiliation:
Department of Chemical and Energy Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama, Kanagawa 240-8501, Japan.
Get access

Abstract

The precipitate behavior in a floating zone silicon crystal produced from a Czochralski single-crystal ingot has been studied. Large precipitates of α-Si3N4 crystal, having a dimension of about 2 μm, were formed at the mid-depth in the wafer by means of annealing at a high temperature in an ambient N2 (70%) + O2 (30%) atmosphere. The precipitate number detected by cross-sectional X-ray topography increased with the increasing annealing time. Interstitial silicon is expected to eliminate the precipitate origins.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abe, T., Samizo, T., and Maruyama, S.: Jpn. J. Appl. Phys. 5, 458 (1966).CrossRefGoogle Scholar
Foll, H. and Kolbesen, B. O.: J. Appl. Phys. 8, 319 (1975).CrossRefGoogle Scholar
Petroff, P. M. and De Kock, A. J. R.: J.Cryst. Growth 30, 117 (1975).CrossRefGoogle Scholar
Fan, T. W., Qian, J. J., Wu, J., Lin, L. Y., and Yuan, J.: J. Cryst. Growth 213, 276 (2000).CrossRefGoogle Scholar
Nakazawa, H., Ogino, M., Teranishi, H., Takahashi, Y., and Habuka, H., Proc.. 6th Int. Symp. Adv. Sci. Tech. Silicon Mater., pp. 119122, Nov. 19-23, 2012, Kona, Hawaii, USA.Google Scholar
Fujimori, H., Kashima, K., Shirai, H., and Okabe, T., Proc. Forum on the Science and Technology of Silicon Materials, pp. 138151 (2001).Google Scholar
Matsushita, Y., Kishino, S., and Kanamori, M., Jpn. J. Appl. Phys. 19, L101 (1980).CrossRefGoogle Scholar
Lang, A. R., J. Appl. Phys. 29, 597 (1958).CrossRefGoogle Scholar
Lang, A. R., Acta Metall. 5, 358 (1957).CrossRefGoogle Scholar
JEITA Standard EM-3512, pp. 3 (2009).Google Scholar
Itoh, T. and Abe, T., Appl. Phys. Lett. 53, 39 (1988).CrossRefGoogle Scholar
Seto, S., Sakaguchi, T., Nakabayashi, Y., Matsumoto, S., Murota, J., Wada, K., and Abe, T., Mater. Sci. Eng. B 114-115, 334 (2004).CrossRefGoogle Scholar
Grove, A. S., Physics and Technology of Semiconductor Devices, 1st ed., John Wiley & Sons, Inc., New Jersey, (1967).Google Scholar
Abe, T. and Maruyama, S., Jpn. J. Appl. Phys. 5, 979 (1966).CrossRefGoogle Scholar
Habu, R., Kojima, K., Harada, H., and Tomiura, A., Jpn. J. Appl. Phys. 32, 1754 (1993).CrossRefGoogle Scholar
Tan, T. Y., Plekhanov, P., and Gosele, U. M., Appl. Phys. Lett. 70, 1715 (1977).CrossRefGoogle Scholar
Tan, T. Y. and Gosele, U. M., Appl. Phys. A 37, 1 (1985).CrossRefGoogle Scholar