Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T15:44:34.074Z Has data issue: false hasContentIssue false

Power Limitation Due To Premature Breakdown In Algan/Gan Hfets

Published online by Cambridge University Press:  10 February 2011

G. Gradinaru
Affiliation:
ECE Department, University of South Carolina, Columbia, SC 29208, [email protected]
N. C. Kao
Affiliation:
ECE Department, University of South Carolina, Columbia, SC 29208, [email protected]
J. Yang
Affiliation:
APA Optics, APA Inc., Blaine, MN 55449
Q. Chen
Affiliation:
APA Optics, APA Inc., Blaine, MN 55449
M. A. Khan
Affiliation:
ECE Department, University of South Carolina, Columbia, SC 29208, [email protected]
T. S. Sudarshan
Affiliation:
ECE Department, University of South Carolina, Columbia, SC 29208, [email protected]
Get access

Abstract

A systematic investigation of high field prebreakdown and breakdown phenomena of AlGaN/GaN Heterojunction Field Effect Transistors (HFETs) is presented. The breakdown process was studied as a function of various parameters such as applied electric field, material layer structure, semiconductor surface conditions, ambient dielectric, and test conditions. Experimental evidence of a breakdown mechanism, distinct from the bulk/subsurface breakdown, namely on-surface breakdown or surface flashover is presented. A practical, unambiguous way of identifying device failure by surface flashover is proposed. Surface flashover between gate and drain contact edges is proposed as the main mechanism initiating premature breakdown in these devices leading to a significant reduction of their power capability.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Denbaars, S. P., Keller, S., Keller, B. P., Wu, Y. F., Kapolnek, D., and Mishra, U. K., Proceedings of 1996 MRS Spring Meeting, Symposium on III Nitride, SiC, and Diamond Materials for Electronic Devices (San Francisco, CA, April 8–12, 1996), vol.423, p. 23 (1996).Google Scholar
2. Aktas, O., Kim, W., Fan, Z., Stengel, F., Botcharev, A., Salvador, A., Mohammad, S. N., and Morkoç, H., Technical Digest of International Electron Device Meeting (IEDM '95), p. 205 (1995).Google Scholar
3. Burm, J., Schaff, J., Eastman, L. F., Amano, H., and Akasaki, I., Appl. Phys. Lett. 68, 2849 (1996).Google Scholar
4. Khan, M. Asif, Chen, Q., Yang, J. W., Shur, M. S., Dermont, B. T., and Higgins, J. A., IEEE Electron Devices Lett. 17, 325 (1996).Google Scholar
5. Fan, Z., Mohammad, S. N., Aktas, O., Botcharev, A., Salvador, A., and Morkoc, H., Appl. Phys. Lett. 69, 1229 (1996).10.1063/1.117420Google Scholar
6. Gaska, R., Chen, Q., Yang, J. W., Khan, M. Asif, Shur, M. S., Ping, A. T., and Adessida, I, Electron. Lett. 33, 1255 (1997).Google Scholar
7. Gaska, R., Chen, Q., Yang, J. W., Osinsky, A., Khan, M. Asif, Shur, M. S., IEEE Electron Devices Lett. (Oct. 1997).Google Scholar
8. Binari, S. C., Redwing, J. M., Kelner, G., and Kruppa, W., Electron Lett. 33, 242 (1997).Google Scholar
9. Wu, Y. F., Keller, B. P., Keller, S., Kapolnek, D., Kozodgy, P., Denbaars, S. P., and Mishra, U. K., Appl. Phys. Lett. 69, 1438 (1996).Google Scholar
10. Fukuta, M., Mimura, T., Suzuki, H., and Suyama, K., IEEE Trans. Electron Devices 25, 559 (1978).Google Scholar
11. Wemple, S. H., Niehaus, W. C., Cox, H. M., Dilorenzo, J. V., and Schlosser, W. O., IEEE Trans. Electron Devices 27, 1013 (1980).Google Scholar
12. Frensley, W. R., IEEE Trans. Electron Devices 28, 962 (1981).Google Scholar
13. David, J. P. R., Sitch, J. E., and Stern, M. S., , IEEE Trans. Electron Devices 29, 1548 (1982).Google Scholar
14. Wroblewski, R., Salmer, G., and Crosnier, Y., IEEE Trans. Electron Devices 30, 154 (1983).Google Scholar
15. Mizuta, H., Yamaguchi, K., and Takahashi, S., IEEE Trans. Electron Devices 34, 2027 (1987).10.1109/T-ED.1987.23194Google Scholar
16. Wada, Y. and Tomizawa, M., , IEEE Trans. Electron Devices 35, 1765 (1988).10.1109/16.7385Google Scholar
17. Chang, C. S. and Day, D. Y. S., Solid State Elctron. 32, 971 (1989).Google Scholar
18. Hikosaka, K., Hirachi, Y., and Abe, M., IEEE Trans. Electron Devices 33, 583 (1986).Google Scholar
19. Crosnier, Y., Temcamani, F., Lippens, D., and Salmer, G., J. Phys., Coll. C4 (suppl. to no.9) 49, 563 (1988).Google Scholar
20. Chau, H. F., Pavlidis, D., Tomizawa, K., IEEE Trans. Electron Devices 38, 213 (1991).10.1109/16.69897Google Scholar
21. Trew, R. J. and Mishra, U. K., IEEE Electron Devices Lett. 12, 524 (1991).Google Scholar
22. Gradinaru, G. and Sudarshan, T. S., J. Appl. Phys. 73, 7643 (1993).Google Scholar
23. Gradinaru, G., Madangarli, V. P., and Sudarshan, T. S., IEEE Trans. Electrical Insul. 28, 555 (1993).Google Scholar
24. Gradinaru, G., Madangarli, V. P., and Sudarshan, T. S., IEEE Trans. Electron Devices 41, 1233 (1994).Google Scholar
25. Sudarshan, T. S., Gradinaru, G., Khan, M. Asif, Madangarli, V. P., and Kao, Nayao C., GaN MPAP Report: High Field Prebreakdown and Breakdown Effects in AIGaN/GaN HFETs (BMDO, Berkeley, May 1997).Google Scholar
26. Gradinaru, G., Chen, Q., Yang, J. W., Khan, M. Asif, and Sudarshan, T. S., submitted to Appl. Phys. Lett (1997).Google Scholar
27. Sudarshan, T. S., Gradinaru, G., Korony, G., Mitchel, W., and Hopkins, R. H., Appl. Phys. Lett. 67, 3435 (1995).10.1063/1.115271Google Scholar
28. Khan, M. Asif, Chen, Q., Sudarshan, T. S., and Gradinaru, G., Appl. Phys. Lett. 69, 254 (1996).Google Scholar