Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-06T06:49:49.376Z Has data issue: false hasContentIssue false

Pourbaix Diagram for The Prediction of Waste Glass Durability in Geologic Environments

Published online by Cambridge University Press:  28 February 2011

Carol M. Jantzen*
Affiliation:
E. I. du Pont de Nemours & Company, Savannah River Laboratory, Aiken, South Carolina 29808
Get access

Abstract

Dissolution of nuclear waste glass occurs by corrosion mechanisms similar to those of metallurgical and mineralogic systems albeit on different time scales. The effects of imposed pH and oxidation potential (Eh) conditions existing in natural environments on metals and minerals have been quantatively and phenomenologically described in compendiums of Pourbaix (pH-potential) diagrams. Construction of Pourbaix diagrams to quantify the response of nuclear waste glasses to repository specific pH and Eh conditions is demonstrated. The expected long-term effects of groundwater contact on the durability of nuclear waste glasses can then be unified.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pourbaix, M., “Atlas of Electrochemical Equilibria in Aqueous Solutions”, Eng.Trans. by Franklin, J.A., NACE, Houston, TX, 644p (1974).Google Scholar
2. Garrels, R.M. and Christ, C.L. “Solutions, Minerals and Equilibria” Harper and Row, NY, 435pp (1965).Google Scholar
3. Plodinec, M. J, Jantzen, C.M., and Wicks, G.G., Adv. in Ceramics, V,8, Wicks, G.G. and Ross, W.A. (Eds.), Am. Ceram.Soc., Columbus, OH, 491 (1984).Google Scholar
4. Plodinec, M.J., Jantzen, C.M. and Wicks, G.G., Sci. Basis for Nucl. Waste Mgt.. VII. McVay, G.L. (Ed.), North-Holland, NY, 755 (1984).Google Scholar
5. Jantzen, C.M. and Plodinec, M.J., J. Non-Cryst. Solids, 67, 207 (1984).Google Scholar
6. Jantzen, C.M., Adv. in Ceramics, V. 20, Clarke, D.E., et. al.(Eds.) Am. Ceram. Soc., Columbus, OH, 703 (1986).Google Scholar
7. Jantzen, C.M., “Nuclear Waste Glass Durability: I. Predicting Environmental Response from Thermodynamic (Pourbaix) Diagrams”, DP-MS-87–2, J. Am. Ceram. Soc. (in press).Google Scholar
8. Blumer, M., Helv. Chim. Acta. 33,1568 (1950).Google Scholar
9. Krumbein, W.C. and Garrels, R.M., J. Geology. 60, 1 (1952),Google Scholar
10. Garrels, R.M. “Geology” in Reference 1, p. 89 (1974).Google Scholar
11. Bickford, D.F. and Diemer, R.B. Jr., J. Non-Cryst. Solids, 84, 276 (1986).Google Scholar
12. Bickford, D.F., Diemer, R.B. Jr. and Iverson, D.C., J. Non-Cryst. Solids, 285 (1986).Google Scholar
13. Cooke, D. and Paul, A., J. Br. Ceram.Soc., 77, 104 (1978).Google Scholar
14. Paul, A., J. Mat. St., 12, 2246 (1977).Google Scholar
15. Grambow, B., Adv. in Ceramics, V.8, Wicks, G.G. and Ross, W.A. (Eds.), Amer. Ceram. Soc., Columbus, OH, 474 (1984).Google Scholar
16. Grambow, B. and Strachan, D.M., Sci. Basis for Nucl. Waste Mgt., VII, McVay, G.L. (Ed.) North-Holland, New York, 623 (1984).Google Scholar
17. Reimus, P.W., Kuhn, W.L., Peters, R.D., Pulsipher, B.A., PNL-5919 (1986).Google Scholar
18. Newton, R.G. and Paul, A., Glass Technology, 21[16], 307 (1980).Google Scholar
19. Jantzen, C.M. “Stability of Radioactive Waste Glasses in Groundwaters Assessed from Hydration Thermodynamics” (in preparation).Google Scholar
20. Mendel, J.E. (compiler), U.S. DOE Report DOE/TIC-11400 (1981).Google Scholar
21. Jantzen, C.M. and Bibler, N.E. Sci. Basis for Nucl. Waste Mgt., IX, Werme, L.O. (Ed.), Mat. Res. Soc., Pittsburgh, PA, 219 (1986).Google Scholar
22. Jantzen, C.M. and Wicks, G.G., Sci. Basis for Nucl. Waste Mgt. VIII, Jantzen, C.M. et al (Eds.), Mat. Res. Soc., Pittsburgh, PA, 29 (1985).Google Scholar
23. Adams, P.B., J. Non-Cryst. Solids, 67, 193 (1984).CrossRefGoogle Scholar
24. Wicks, G.G., Mosley, W.C., Whitkop, P.G., and Saturday, K.A., J. Non-Crvst. Solids, 49, 413 (1982).Google Scholar
25. Clark, D.E. and Hench, L.L., Nucl. Chem. Waste Mgt.. 2, 93 (1981).CrossRefGoogle Scholar
26. Wicks, G.G., O'Rourke, P.E. and Whitkop, P.G., DP-MS-81–104 (1982).Google Scholar
27. Horn, J.M. Jr. and Onada, G.Y. Jr., J. Am. Ceram. Soc., 61, 523 (1978).Google Scholar
28. Buckwalter, C.Q. and Pederson, L.R., J. Am. Ceram. Soc., 65[9], 431 (1982).CrossRefGoogle Scholar
29. Paul, A. and Zaman, M.S., J. Mat. Sci., 13, 1499 (1978).Google Scholar
30. Hench, L.L. and Clark, D.E., J. Non-Cryst. Solids, 28, 83 (1978).Google Scholar
31. Grambow, B., Sci. Basis for Nucl. Waste Mat., V, Lutze, W. (Ed.) North-Holland, New York, 93 (1982).Google Scholar
32. Macedo, P.B.. Barkatt, Aa., Gibson, B.C., and Montrose, C.J., Nuclear Technology, 73, 199 (1986).Google Scholar
33. Sales, B.C., White, C.W., Begun, G.M., and Boatner, L.A., J. Non-Cryst. Solids, 67, 245 (1984).CrossRefGoogle Scholar
34. Jantzen, C.M., Clarke, D.R., Morgan, P.E.D., and Harker, A.B., J. Am. Ceram. Soc., 65[6], 292 (1982).CrossRefGoogle Scholar
35. Barkatt, Aa., Macedo, P.B., Sousanpour, W., Boroomand, M.A., Szoke, P., and Rogers, V.L., PNL-4382 (1982).Google Scholar
36. Das, C.R., J. Am. Ceram. Soc., 64[4]. 188 (1981).Google Scholar
37. Jantzen, C.M., Sci. Basis for Nucl. Waste Mgt. VII, McVay, G.L. (Ed). Elsevier Publ., New York, 613 (1984).Google Scholar
38. Klein, C. and Bricker, O.P., Econ. Geol., 73, 1457 (1977).CrossRefGoogle Scholar
39. Sillen, L. G., Adv. in Chemistry Series, No. 67, 57 69 (1967).Google Scholar
40. Manara, A., Lanza, F., Ceccone, G., DellaMea, G., Salvagno, G., Sci. Basis for Nucl. Waste Mgt. VIII, Jantzen, C.M. et.al (Eds.), Mat.Res.Soc., Pittsburgh, PA, 63 (1985).Google Scholar