Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T06:57:38.381Z Has data issue: false hasContentIssue false

Potential Energy Surfaces and Stability of O in Elemental and Compound Semiconductors

Published online by Cambridge University Press:  25 February 2011

S. K. Estreicher
Affiliation:
Physics Department, Texas Tech University, Lubbock, TX 79409–1051.
M. A. Roberson
Affiliation:
Physics Department, Texas Tech University, Lubbock, TX 79409–1051.
C. H. Chu
Affiliation:
Physics Department, Texas Tech University, Lubbock, TX 79409–1051.
J. Solinsky
Affiliation:
Physics Department, Texas Tech University, Lubbock, TX 79409–1051.
Get access

Abstract

Potential energy surfaces and electronic structures of interstial oxygen (Oi) in cubic C, Si, AIP, SiC, and BN have been calculated. The equilibrium site is a bent-bridged bond. In compound semiconductors, Oi has a larger degree of bonding with the most electronegative of the host atoms (P, C, or N) than with the least electronegative one. In addition to the barrier for rotation of O, about the < 111 > axis, which does not involve breaking a bond, we calculated the barriers for migration between adjacent bond-centered sites. There are two such barriers in compound semiconductors. In order to estimate the relative stability of Oi in the various hosts, we calculated the energies involved in inserting O2 into the lattice and dissociating it into two isolated Oi's.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For reviews, see Patel, J. R., in “Semiconductor Silicon 1977”, ed. Huff, H. R. and Sirtl, E., (Electrochem. Soc. Princeton, 1977), p. 521;Google Scholar
Kimerling, L. C., in “Defecte in Semiconductors”, (Elsevier, NY, 1981).Google Scholar
2. Kaiser, W., Keck, P. H., and Lange, C. F., Phys. Rev. 101, 264 (1956);CrossRefGoogle Scholar
Bosomworth, D. R., Hayes, W., Spray, A. R. L. and Watkins, G. D., Proc. Roy. Soc. (London), Ser. A 317, 133 (1970).Google Scholar
3. Hrostowski, H. J. and Adler, B. J., J. Chem. Phys. 33, 980 (1960).CrossRefGoogle Scholar
4. Corbett, J. W., McDonald, R. S. and Watkins, G. D., J. Phys. Chem. Sol. 25, 873 (1964).CrossRefGoogle Scholar
5. See e.g., Newman, R. C., J. Phys. B 18, L967 (1985).CrossRefGoogle Scholar
6. Watkins, G. D. and Corbett, J. W., Phys. Rev. 121, 1001 (1961);CrossRefGoogle Scholar
Corbett, J. W., Watkins, G. D., Chrenko, R. M., and McDonald, R. S., Phys. Rev. 121, 1015 (1961).CrossRefGoogle Scholar
7. Snyder, L. C., Corbett, J. W., Deak, P., and Wu, R., MRS Symp. Proc. 104, 179 (1988);CrossRefGoogle Scholar
Plans, J., Diaz, G., Martinez, E., and Yndurain, F., MRS Symp. Proc. 35, 788 (1987);Google Scholar
Martinez, E., Plans, J., and Yndurain, F., Phys. Rev. B 36, 8043 (1987).CrossRefGoogle Scholar
8. Chadi, D. J., Phys. Rev. B 41, 10595 (1990);CrossRefGoogle Scholar
Jones, R., Semic. Sci. Technol. 5, 255 (1990);CrossRefGoogle Scholar
Deak, P., Snyder, L. C., Corbett, J. W., Phys. Rev. Lett. 66, 747 (1991).CrossRefGoogle Scholar
9. Chu, C. H. and Estreicher, S. K., Phys. Rev. B 42, 94S6 (1990).Google Scholar
10. Estreicher, S. K., Ray, A. K., Fry, J. L., and Marynick, D. S., Phys. Rev. Lett. 55, 1976 (1985) and 57, 3301 (1986);CrossRefGoogle Scholar
Estreicher, S. K., Phys. Rev. B 37, 858 (1985).CrossRefGoogle Scholar
11. Halgren, T. A. and Lipscomb, W. N., J. Chem. Phys. 58, 1569 (1973);CrossRefGoogle Scholar
Marynick, D. S. and Lipscomb, W. N., Proc. Nat. Acad. Sci. USA 79, 1341 (1982).CrossRefGoogle Scholar
12. Estreicher, S. K., Roberson, M. A., and Chu, C. H., unpublished.Google Scholar
13. Armstrong, D. R., Perkins, P. G., and Stewart, J. J. P., J. Chem. Soc. Dalton Trans. 8, 838 (1973).CrossRefGoogle Scholar
14. Huheey, J. E., “Inorganic Chemistry” (Harper & Row, New York, 1983), p. 258.Google Scholar
15. Pauling, L., “The Chemical Bond” (Cornell UP, 1967).Google Scholar
16. The bond strengths come from Bailar, J. C. Jr, Emeléus, H. J., Nyholm, R., and Trotman-Dickenson, A. F., “Comprehensive Inorganic Chemistry” (Permagon, Oxford, 1973), except the O-Al bond strength:Google Scholar
Handbook of Chemistry and Physics” ed. Weast, R.C., (CRC, Boca Raton, 1988).Google Scholar