Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:48:21.771Z Has data issue: false hasContentIssue false

Potential Dependent Endothelial Cell Adhesion, Growth and Cytoskeletal Rearrangements

Published online by Cambridge University Press:  15 February 2011

Tiean Zhou
Affiliation:
Center for Intelligent Biomaterials and The Departments of Chemistry
Susan J. Braunhut
Affiliation:
Biological Sciences, University of Massachusetts, Lowell, MA 01854
Diane Medeiros
Affiliation:
Biological Sciences, University of Massachusetts, Lowell, MA 01854
Kenneth A. Marx
Affiliation:
Center for Intelligent Biomaterials and The Departments of Chemistry
Get access

Abstract

Normal endothelial cells (ECs), lining the blood vessels, are influenced by their interaction with the underlying potentially piezoelectric extracellular matrix (ECM). That this interaction may affect the EC metabolic state and functions in vivo prompted us to study the subsequent response of cultured ECs on indium-tin oxide (ITO) glass electrodes subjected to 1 hr of constant DC surface potential ranging from -0.3 to +0.6 V (vs. Ag/AgCl). We measured, relative to controls, cellular viability, growth rate and changes in actin microfilament organization in ECs over a subsequent 6 days in culture. The growth rate of ECs was stimulated by negative potential and inhibited by positive potential. Differences could be detected as early as three days post-potential. We also observed a potential dependent cellular shape change and actin microfilament rearrangement at positive potentials within four days of treatment. ECs changed in average cell surface area and assumed a polygonal cell shape in response to treatment. Using NBD-phalloidin stain for actin and fluorescence microscopy, microfilaments were observed to re-distribute to the periphery of the cell at positive potential, indicative of cellular stress.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hirschi, K. K. and D'Amore, P. A., Cardiovasc. Res. 32 (4), 687698 (1996).Google Scholar
2. Stehbens, W. E., Acta Anat (Basel) 157 (4), 261274 (1996).Google Scholar
3. Michiels, C., Arnold, T., Janssens, D., Bajou, K., Geron, I., Remade, J., Int. Angiol 15 (2), 124130 (1996).Google Scholar
4. Takahashi, M., Ishida, T., Traub, O., Corson, M. A., Berk, B. C., J. Vasc. Res. 34 (3), 212219 (1997).Google Scholar
5. Segal, S. S., Hepertension 23 (6 Pt 2), 11131202 (1994).Google Scholar
6. Garlanda, C., Dejana, E., Arterioscler Thromb. Vasc. Biol. 17 (7), 11931202 (1997).Google Scholar
7. Risau, W., FASEB J. 9 (10), 926933 (1995).Google Scholar
8. Augustin, H. G., Kozian, D. H., Johonson, R. C., Bioessays 16 (12), 901906 (1994).Google Scholar
9. Braunhut, S. J. and Palomares, M., Microvasc. Res. 41, 4762 (1991).Google Scholar
10. Paige, K., Palomares, M., D'Amore, P. and Braunhut, S. J., In Vitro Cell and Develop. Biol. 27, 151157 (1991).Google Scholar
11. Engerman, R. L., Pfenbach, D. and Davis, M., Lab. Invest. 17, 738741 (1967).Google Scholar
12. Rosnick, N. and Gimbrone, M. A., FASEB J. 9, 874882 (1995).Google Scholar
13. Folkman, J., Natl. Med. 1, 2731 (1995).Google Scholar
14. Goodman, R., Weisbrort, D., Uluc, A. and Henderson, A., Bioelectrochem. Bioenerg. 28, 311318 (1992).Google Scholar
15. Phillips, J., Heggren, W., Thomas, W.., Ishida-Jones, T. and Adey, W. R., Biochim. Biophys. Acta. Gene Structure Exp. 1132, 140144 (1992).Google Scholar
16. Goodman, R., Blank, M., Lin, H., Dai, R., Khorokova, O., Soo, L. and Weisbrot, D., Bioelectrochem. Bioenerg. 33, 115120 (1994).Google Scholar
17. Hoffman, G. A., Chap. 29 in Electroporation and Electrofusion in Cell Biology, edited by Neumann, E., Sowers, A. E. and Jordan, C. A. (Plenum Press, New York, 1989) pp. 389407.Google Scholar
18. Kojima, J., Shinohara, H., Ikariyama, Y., Aizawa, M., Nagaike, K. and Morioka, S., Biotechnology and Bioengineering 39, 2732 (1992).Google Scholar
19. Bouaziz, A., Vacher, M.. and Caprani, A., Biomaterials 16,727734 (1995).Google Scholar
20. Cooper, M. S. and Keller, R. E., Proc. Natl. Acad. Sci. USA 81, 160164 (1984).Google Scholar
21. Valentini, R. F., Varge, T. G., Gardella, J. A. and Aebischer, P., Biomaterials 13, 183190 (1992).Google Scholar
22. Detlavs, I., Dombrovska, L., Klavinsh, I., Turauska, A., Shkirmante, B. and Slutskii, L., Bioelectrochem. Bioenerg. 35, 1317 (1994).Google Scholar
23. Schmidt, C. E., Shastri, V. R., Vacanti, J. P. and Langer, R., Proc. Natl. Acad. Sci. USA 94, 89488953 (1997).Google Scholar
24. Yaoita, M., Aizawa, M. and Ikariyama, Y., Expl. Cell Biol. 57, 4351 (1989).Google Scholar
25. Kojima, J., Shinohara, H., Ikariyama, Y., Aizawa, M., Nagaike, K. and Morioka, S., Journal of Biotechnology 18, 129140 (1991).Google Scholar
26. Cho, M. R., Thatte, H. S., Lee., R. C. and Golan, D. E., FASEB J. 10, 15521558 (1996).Google Scholar
27. Cho, M. R., Thatte, H. S., Lee., R. C. and Golan, D. E., FASEB J. 8, 771776 (1994).Google Scholar
28. Wang, N. and Ingber, D. E., Science 260, 11241127 (1993).Google Scholar
29. Braunhut, S. J., Medeiros, D., Lai, L. and Bump, E. A., Brit. J. Canc. 74, 157160 (1996).Google Scholar