Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:07:33.395Z Has data issue: false hasContentIssue false

Post-stress/breakdown leakage mechanism in ultrathin high-κ (HfO2)x(SiO2)1-x/SiO2 gate stacks: A nanoscale conductive-Atomic Force Microscopy C-AFM

Published online by Cambridge University Press:  01 February 2011

Hasan Javed Uppal
Affiliation:
[email protected]@gmail.com, University of Manchester, Electrical and Electronics Engineering, Microelectronics and Nanostructures (M&N) Research, Manchester, United Kingdom
Vladimir Markevich
Affiliation:
[email protected], University of Manchester, Electrical and Electronics Engineering, Microelectronics and Nanostructures (M&N) Research, Manchester, Greater Manchester, United Kingdom
Stergios N Volkos
Affiliation:
[email protected], MBE Institute of Materials Science, NCSR DEMOKRITOS, Athens, Greece
Athanasios Dimoulas
Affiliation:
[email protected], MBE Institute of Materials Science, NCSR DEMOKRITOS, Athens, Greece
Bruce Hamilton
Affiliation:
[email protected], University of Manchester, Electrical and Electronics Engineering, Microelectronics and Nanostructures (M&N) Research, Manchester, Greater Manchester, United Kingdom
Anthony R Peaker
Affiliation:
[email protected], University of Manchester, Electrical and Electronics Engineering, Microelectronics and Nanostructures (M&N) Research, Manchester, Greater Manchester, United Kingdom
Get access

Abstract

Conductive atomic force microscopy (C–AFM) in ultra high vacuum (UHV) has been used to characterize charge trapping in ultrathin as–deposited oxide films of 2–4 nm (HfO2)x(SiO2)1-x/SiO2 multilayer gate stacks. Pre– and post–stress/breakdown (BD) dielectric degradation is analyzed on a nanoscale. A systematic observation probes stress induced trap generation facilitating physical stack BD. Degradation is considered in terms of the pronounced localized leakage contribution through the high–κ and interlayer SiOx. Simultaneous nanoscale current–voltage (I-V) characteristics and C–AFM imaging illlutrates charge trapping/decay from the native or stress induced traps with intrinsic charge lateral propagation. A post–stress/BD constant voltage imaging shows effects of stress bias polarity on the BD induced topography and trap assisted nano–current variations. Physical attributes of deformed artifacts relate strongly to the polarity of electron injection (gate or substrate) so discriminating the trap generation in high–κ and interlayer SiOx revealing non–homogeneous (dynamic) nature of leakage.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]. Scott, R. S. et al., IEEE Trans. Elect. Dev., vol. 43, no. 7, pp. 11331143, Jul. (1996).Google Scholar
[2]. Suehle, J. S. et al., Microelectron. Rel., vol. 45, no. 3–5, pp. 419426, Feb. (2005).Google Scholar
[3]. Lombardo, S. et al., J. Appl. Phys., vol. 86, no. 11, pp. 63826391, Dec. (1999).Google Scholar
[4]. Ang, D. S., Ong, Y. C., O'Shea, S. J., Pey, K. L., Tung, C. H., Kawanago, T., Kakushima, K., Iwai, H., Appl. Phys. Lett. 92, 192904 (2008).Google Scholar
[5]. Porti, M. et al., Micro. Eng. 84 19561959 (2007).Google Scholar
[6]. Fiorenza, P., Polspoel, W. and Vandervorst, W., App. Phy. Lett., 88, 222104 (2006).Google Scholar
[7]. Uppal, H. J., Mitrovic, I. Z., Hall, S., Hamilton, B., Markevich, V., Peaker, A.R., J. Vac. Sci. Technol. B 27(1), Jan/Feb (2009). (in press) DOI: 10.1116/1.3025822Google Scholar
[8]. Efthymiou, E., Bernardini, S., Volkos, S. N., Hamilton, B., Zhang, J. F., Uppal, H. J., Peaker, A. R., Micro. Eng. 84 22902293 (2007).Google Scholar
[9]. Wu, You-Lin et al., IEEE Trans. Elect. Dev. Mat. Rel., vol. 8, no. 2, 352357, June (2008).Google Scholar
[10]. Polspoel, W. et al., Microelec. Rel. 48 15211524 (2008).Google Scholar
[11]. Van Elshocht, S. et al., Journal of Electrochemical Soc., 151 (4) F77–F80 (2004).Google Scholar
[12]. Polspoel, W. et al., Micro.Eng. 84 495500 (2007).Google Scholar
[13]. Cunningham, S., Larkin, I.A., Davis, J.H., Appl. Phys. Lett. 73 (1) 123125 (1998).Google Scholar
[14]. Fowler, R. H. and Nordheim, L., Proc. R. Soc. London, Ser. A 119, 173 (1928).Google Scholar
[15]. Takeuchi, H., King, T. J., Appl. Phys. Lett., vol. 83, no. 4, pp. 788790, July. (2003).Google Scholar
[16]. Chiu, F.-C., J. Appl. Phys. 100, 114102 (2006).Google Scholar
[17]. Degraeve, R. et al., Tech. Dig. — Int. Electron Devices Meet., 6.2.1 (2001).Google Scholar
[18]. Kamohara, S. et al., IEEE Int. Reliab. Phys. Symp. Proc., 36th Annual, 57 (1998).Google Scholar
[19]. Wu, Y. L. et al., IEEE Trans. Elect. Dev. Mat. Rel., vol. 6, no. 1, 7580, Mar. (2006).Google Scholar
[20]. Miranda, E. et al., Jpn J. Appl. Phys. 38 2223 (1999).Google Scholar
[22]. Weibull, W., J. Appl. Mechanics 18 (3), 293–7 (1951).Google Scholar
[23]. Ong, Y. C. et al., Appl. Phys. Lett. 92, 022904 (2008).Google Scholar
[24]. Stathis, J. H. et al., J. Appl. Phys., vol. 86, no. 10, 57575766 (1999).Google Scholar