Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T16:49:42.124Z Has data issue: false hasContentIssue false

Positron Studies of Defects in Nitrogen and Carbon Implanted Titanium

Published online by Cambridge University Press:  10 February 2011

M. Soltani-Farshi
Affiliation:
IKF, Institut fuir Kernphysik, August-Euler-Str. 6, 60486 Frankfurt, Germany, [email protected]
H. Baumann
Affiliation:
IKF, Institut fuir Kernphysik, August-Euler-Str. 6, 60486 Frankfurt, Germany
W. Anwand
Affiliation:
FZR, Forschungszentrum Rossendorf, Postfach 510119, 01314 Dresden, Germany
G. Brauer
Affiliation:
FZR, Forschungszentrum Rossendorf, Postfach 510119, 01314 Dresden, Germany
P.G. Coleman
Affiliation:
School of Physics, University of East Anglia, Norwich NR4 7TJ, United Kingdom
E. Richter
Affiliation:
FZR, Forschungszentrum Rossendorf, Postfach 510119, 01314 Dresden, Germany
U. Kreissig
Affiliation:
IKF, Institut fuir Kernphysik, August-Euler-Str. 6, 60486 Frankfurt, Germany
K. BETHGE
Affiliation:
IKF, Institut fuir Kernphysik, August-Euler-Str. 6, 60486 Frankfurt, Germany
Get access

Abstract

Modification of materials by ion beams creates defects and defect formation processes. The implantation of nitrogen into titanium influences the hydrogen content in this metal. Hydrogen accumulation enhances hydrogenations in the implanted region. This effect may have important consequences, because excessive hydrogen accumulation generally leads to precipitating hydrids in the matrix lattice and the metal undergoes degradation of its mechanical properties. Many studies have shown that defects in metals trap light gas atoms like H or He which are solved or implanted in the sample. Therefore, the decoration of defects with these atoms is a method to trace defect concentrations and to study the trapping and detrapping mechanism. Mobile defects can be trapped at implanted atoms, at inhomogeneities or at inner surfaces like grain boundaries or interfaces of different phases. Using the slow positron beam technique the traps for hydrogen attributed to vacancy-type defects have been investigated in cp-Ti implanted with nitrogen or carbon.

The concentration of hydrogen has been detected by the 15N profiling technique (1H(15N,αγ)12C). The nitrogen and carbon content were measured by 15N(1H,αγ)12C and 13C(p,γ)14N reaction, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Hirth, J. P. and Johnson, H., Corrosion 32 (1976) 3 Google Scholar
2 McCracken, G. M. and Stott, P. E., Nucl. Fusion 19 (1979) 889 Google Scholar
3 Wiswall, R. in: Hydrogen in Metals II. eds., Alefeld, G. and Völkl, J. vol. 29(1978), p. 201 Google Scholar
4 Noort, R. Van, J. Mat. Sci., 22 (1987) 3801 Google Scholar
5 Elder, J. E., Thamburaj, R., Patnaik, P., Surf. Eng., 5 (1989) 55 Google Scholar
6 Rieu, J., Pichat, A., Rabbe, L.M., Rambert, A., Chabrol, C., Mat. Sci. Tech., 8 (1992) 589 Google Scholar
7 Neu, K., Baumann, H., Angert, N., Ruck, D. and Bethge, K., NIM B89 (1994) 379 Google Scholar
8 Soltani-Farshi, M., Baumann, H., ROck, D. and Bethge, K., NIM B127/128 (1997) 787 Google Scholar
9 Soltani-Farshi, M., Baumann, H., Ruck, D. and Bethge, K., MRS-Fall 97, Boston Vol 504 (1997)Google Scholar
10 Soltani-Farshi, M., Baumann, H., ROck, D., Richter, E., Bethge, K., Surf. Coat. & Tech. (1998)Google Scholar
11 Schultz, P.J., Lynn, K.G., Rev. Mod. Phys., 60 (1988) 701 Google Scholar
12 Hoffinann, B., PhD thesis, Inst of Nucl. Phys., Frankfurt/Main, Germany, 1987 Google Scholar
13 , Lanford, Nucl. Instr. and Meth. 149 (1978) 1 Google Scholar
14 Ziegler, J.F. et.al., The Stopping and Range of Ions in Solids, 1 (Pergamon, New York, 1985)Google Scholar
15 Rolfs, C. and Rodney, W.S., Nucl. Phys. A 235 (1974) 450 Google Scholar
16 Close, D.A., Malanify, J.J., Umbarger, C.J., Nucl. Inst. Meth. B113 (1973) 561 Google Scholar
17 Chilton, N.B., man, P.G. Cole, Meas. Sci. Tech. 6 (1995) 53 Google Scholar
18 Anwand, W., Brauer, G., Coleman, P.G., Skorupa, W., MRS-Fall 97, Boston Vol 504 (1997)Google Scholar
19 Veen, A. van, Schut, H., Vries, J. de, Hakvoort, R.A. and Ijpma, M.R., in Positron Beams for Solid and Surfaces, edited by Schultz, P.J., Massoumi, G.R., AIP Conf. 218 (1990) 171 Google Scholar
20 Pivin, J.C., Zheng, P., Ruault, M.O., Mat. Sci. Eng., A115 (1989) 83 Google Scholar