Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T05:35:59.503Z Has data issue: false hasContentIssue false

Poly(vinylidene fluoride-trifluoroethylene) (72/28) interconnected porous membranes obtained by crystallization from solution

Published online by Cambridge University Press:  26 July 2011

Armando Ferreira
Affiliation:
Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
Jaime Silva
Affiliation:
Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal. IPC-Institute for Polymers and Composites, University of Minho, 4800-058, Guimarães, Portugal.
Vitor Sencadas
Affiliation:
Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
José Luís Gómez-Ribelles
Affiliation:
Centro de Biomateriales y Ingineria Tisular, Universidad Politécnica de Valencia, 46022, Valencia, Spain. Regenerative Medicine Unit, Centro de Investigación Príncipe Felipe, Autopista del Saler 16, 46013 Valencia, Spain. CIBER en Bioingeniería, Biomateriales y Nanomedicina, Valencia, Spain.
Senentxu Lanceros-Méndez*
Affiliation:
Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
Get access

Abstract

Electroactive macroporous poly[(vinylidene fluoride)-co-trifluoroethylene] membranes have been processed by solvent evaporation at room temperature with different polymer/solvent concentrations. The pore architecture consists on interconnected spherical pores and this morphology is independent of the membrane thickness. The porosity of the produced membranes increases from 72% for the higher polymer concentration in the polymer/solvent solution (15/85), up to 80% for the lowest polymer concentration in the polymer/solvent solution.

Fourier transform infrared spectroscopy and differential scanning calorimetry measurements reveal that the polymer crystallizes in the ferroelectric phase and the polymer/solvent ratio does not influences the Curie transition and the melting temperature of the polymer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lovinger, AJ. Developments in Crystalline Polymers. London: Elsevier Applied Science, 1982.Google Scholar
2. Nalwa, HS. Ferroelectric Polymers: Chemistry, Physics, and Applications. New York: Marcel Decker, Inc., 1995.Google Scholar
3. Qiming, Zhang, Huang, C, Xia, F, and Su, J. Electroactive polymer (EAP) actuators as artificial muscles: reality, potencial and Challenges New York, 2004.Google Scholar
4. Klinge, U, Klosterhalfen, B, Öttinger, AP, Junge, K, and Schumpelick, V. Biomaterials 2002;23(16):34873493.Google Scholar
5. Ferreira, A, Silva, J, Sencadas, V, Ribelles, JLG, and Lanceros-Méndez, S. Macromolecular Materials and Engineering 2010;295(6):523528.Google Scholar
6. Laroche, G, Marois, Y, Schwarz, E, Guidoin, R, King, MW, Pâris, E, and Douville, Y. Artificial Organs 1995;19(11):11901199.Google Scholar
7. Sencadas, V, Hernández, JCRH, Ribeiro, C, Goméz-Ribelles, JL, and Lanceros-Mendez, S. 2009, 1140. Materials Research Society Symposium Procceedings, vol. 1140. Boston: MRS, 2009.Google Scholar
8. Ribeiro, C, Sencadas, V, Ribelles, JLG, and Lanceros-Méndez, S. Soft Materials 2010;8(3):274287.Google Scholar
9. Ji, G-L, Zhu, B-K, Cui, Z-Y, Zhang, C-F, and Xu, Y-Y. Polymer 2007;48(21):64156425.Google Scholar
10. Ribeiro, C, Sencadas, V, Caparros, C, Gómez Ribelles, JL, and Lanceros-Méndez, S. Journal of Nanoscience and Nanotechnology 2010; To be published. Google Scholar
11. Simoes, RD, Rodriguez-Perez, MA, De Saja, JA, and Constantino, CJL. Polymer Engineering & Science 2009;49(11):21502157.Google Scholar