Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T09:52:22.851Z Has data issue: false hasContentIssue false

Polymer-Oxide Anode Materials

Published online by Cambridge University Press:  10 February 2011

T. A. Kerr
Affiliation:
University of Waterloo, Department of Chemistry, Waterloo, Ontario Canada N2L 3G1; [email protected]
F. Leroux
Affiliation:
University of Waterloo, Department of Chemistry, Waterloo, Ontario Canada N2L 3G1; [email protected]
L. F. Nazar
Affiliation:
University of Waterloo, Department of Chemistry, Waterloo, Ontario Canada N2L 3G1; [email protected]
Get access

Abstract

The adaptable layer structure of molybdenum trioxide was exploited to insert the amino derivative form of the conductive polymer poly(para-phenylene) (PPPNH2) within the van der Waals gap. Two polymer insertion routes were designed that yield novel PPPNH2-MoO3 materials of different composition. Characterization of these materials using powder XRD, thermal analysis, and FTIR spectroscopy shows insertion of the polymer has occurred. The properties of the nanocomposites for low potential electrochemical lithium insertion were compared to those of the sodium molybdenum bronze using the materials as cathodes in conventional lithium cells. Initial results indicate the specific charge capacity and irreversibility during the first charge are effected by polymer content whereas polarization is not.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kerr, T.A., Wu, H., Nazar, L.F., Chem. Mater., 8, 2005 (1996)Google Scholar
2. Leroux, F., Goward, G.R., Power, W.P., Nazar, L.F., J. Electrochem. Soc., 144, 3886 (1997)10.1149/1.1838107Google Scholar
3. Koene, B.E., Nazar, L.F., Solid State Ionics, 89, 147 (1996)Google Scholar
4. Leroux, F. and Nazar, L.F., These Proceedings, Paper Y10.8.Google Scholar
5. Dubois, M., Billaud, D., J. Solid State Chem., 127, 123 (1996);Google Scholar
Dubois, M., Billaud, D., J. Solid State Chem., 132, 434 (1997);Google Scholar
6. Thomas, D.M., McCarron, E.M., Mat. Res. Bull., 21, 945 (1986)10.1016/0025-5408(86)90132-7Google Scholar
7. Kanatzidis, M.G., Marks, T.J., Inorg. Chem., 26, 783 (1987),Google Scholar
Wang, L., Schindler, J., Kannewurf, C.R., Kanatzidis, M.G., J. Mater. Chem., 7, 1277 (1997).Google Scholar
8. Kovacic, P., Kyriakis, A., J. Amer. Chem. Soc., 85, 454 (1963);10.1021/ja00887a019Google Scholar
Kovacic, P., Oziomek, J., J. Org. Chem., 29, 100 (1964).10.1021/jo01024a023Google Scholar
9. Kovacic, P., Marchionna, V.J., Koch, F.W., Oziomek, J., J. Org. Chem., 31, 2467 (1966).10.1021/jo01346a008Google Scholar
10. Nazar, L.F., Zhang, Z., Zinkweg, D., J. Amer. Chem. Soc., 114, 6239 (1992)10.1021/ja00041a048Google Scholar
11. Ramachandran, K. and Lerner, M. M., J. Electrochem. Soc., 144, 3739 (1997).Google Scholar