Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T05:36:57.917Z Has data issue: false hasContentIssue false

Polymer-Derived Silicon Carbide Fibers with Near-Stoichiometric Composition and Low Oxygen Content

Published online by Cambridge University Press:  15 February 2011

Michael D. Sacks
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
Gary W. Scheiffele
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
Mohamed Saleem
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
Gregory A. Staab
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
Augusto A. Morrone
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
Thomas J. Williams
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
Get access

Abstract

Fine-diameter (∼ 10–15 µm), polymer-derived SiC fibers were characterized. The average tensile strength of the fibers was ∼ 2.8 GPa, although some lots had average strengths exceeding 3.5 GPa. Microstructure observations showed that fibers had fine grain sizes (mostly ∼0.05–0.2 µm), high densities (∼3.1–3.2 g'cm3), and small residual pore sizes (≤0.1 µm). Elemental analysis showed that fibers had near-stoichiometric composition. Electron and X-ray diffraction analyses indicated that fibers were primarily beta silicon carbide, with a minor amount of the alpha phase. A small amount of graphitic carbon was detected in some samples using high resolution transmission electron microscopy. The residual oxygen content in the fibers was ≤0.1 wt%. Fibers exhibited good thermomechanical stability, as heat treatment at 1800°C for 4h in argon resulted in only an ∼ 8% decrease in strength.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yajima, S., Hayashi, J., Omori, M., and Okamura, K., Nature, 261, 683685 (1976).Google Scholar
2. Yajima, S., Okamura, K., Hayashi, J., and Omori, M., J. Am. Ceram. Soc., 59, 324327 (1976).Google Scholar
3. Okamura, K., Composites, 18, 107120 (1987).Google Scholar
4. Mazdiyasni, K.S., Fiber Reinforced Ceramic Composites: Materials. Processing, and Technology, (Noyes Publications, Park Ridge, NJ, 1990).Google Scholar
5. Cooke, T.F., J. Am. Ceram. Soc., 74(12), 29592978 (1991).Google Scholar
6. Takeda, M., Imai, Y., Ichikawa, H., and Ishikawa, T., Ceram. Eng. Sci. Proc., 12(7-8), 10071018 (1991).Google Scholar
7. Ishikawa, T., Composites Sci. Technol., 51, 135144 (1994).Google Scholar
8. Hasegawa, Y., Composites Sci. Technol., 51, 161166 (1994).Google Scholar
9. Hasegawa, Y., J. Inorg. Organomet. Polym., 2, 161169 (1992).Google Scholar
10. Takeda, M., Sakamoto, J., Imai, Y., Ichikawa, H., and Ishikawa, T., Ceram. Eng. Sci. Proc., 15, 133141 (1994).Google Scholar
11. Lipowitz, J., Rabe, J.A., and Zank, G.A., Ceram. Eng. Sci. Proc., 12(9-10), 18191831 (1991).Google Scholar
12. Xu, Y., Zangvil, A., Lipowitz, J., Rabe, J.A., and Zank, G.A., J. Am. Ceram. Soc., 76(12), 30343040 (1993).Google Scholar
13. Lipowitz, J., Barnard, T., Bujalski, D., Rabe, J.A., Zank, G.A., Xu, Y., and Zangvil, A., Composites Sci. Technol., 51, 167171 (1994).Google Scholar
14. Zhang, Z.-F., Scotto, C.S., and Laine, R.M., Ceram. Eng. Sci. Proc., 15, 152161 (1994).Google Scholar
15. Toreki, Wm., Choi, G.J., Batich, C.D., Sacks, M.D., and Saleem, M., Ceram. Eng. Sci. Proc., 13(7-8), 198208 (1992).Google Scholar
16. Toreki, Wm., Batich, C.D., Sacks, M.D., Saleem, M., Choi, G.J., and Morrone, A.A., Composites Sci. Technol., 51, 145159 (1994).Google Scholar
17. Toreki, W., Serrano, E., Scheiffele, G.W., Saleem, M., Sacks, M.D., Batich, C.D., and Choi, G.J.., Paper SIIIP-9-94, 96th Annual Meeting & Exposition of the American Ceramic Society, Indianapolis, IN, April 24-28, 1994.Google Scholar
18. Mah, T., Hecht, N.L., McCullum, D.E., Hoenigman, J.R., Kim, H.M., Katz, A.P., Lipsitt, H., J. Mater. Sci., 19(4), 11911201 (1984).Google Scholar
19. Simon, G. and Bunsell, A.R., J. Mater. Sci., 19(11), 36493657 (1984).Google Scholar
20. Clark, T.J., Arons, R.M., Stamatoff, J.B., and Rabe, J., Ceram. Eng. Sci. Proc., 6(7-8), 576578 (1985).Google Scholar
21. Jaskowiak, M.H. and DiCarlo, J.A., J. Am. Ceram. Soc., 72(2), 192197 (1989).Google Scholar
22. Prochazka, S., in Soecial Ceramics, edited by Popper, P. (British Ceramic Research Association, Stoke-on-Trent, UK, 1974), pp. 171181.Google Scholar
23. Bocker, W. and Hausner, H., Powder Metal. Intern., 10(2), 8789 (1978).Google Scholar
24. ASTM Test Method D3379-75, in 1993 Annual Book of ASTM Standards, Section 15, Vol. 15.03 (ASTM, Philadelphia, PA, 1993), pp. 131134.Google Scholar
25. ASTM Test Method D3800-79, Procedure B, in 1988 Annual Book of ASTM Standards, Section 15, Vol. 15.03 (ASTM, Philadelphia, PA, 1988), pp. 172176.Google Scholar
26. Wu, H.F. and Netravali, A.N., J. Mater. Sci., 27, 33183324 (1992).Google Scholar
27. Serrano, E., Scheiffele, G.W., Sacks, M.D., and Batich, C.D., unpublished work.Google Scholar
28. Sawyer, L.C., Jamieson, M., Brikowski, D., Haider, M.I., and Chen, R.T., J. Am. Ceram. Soc., 70(11), 798810 (1987).Google Scholar
29. Koumoto, K., Takeda, S., Pai, C.H., Sato, T., and Yanagida, H., J. Am. Ceram. Soc., 72(10), 19851987 (1989).Google Scholar