Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T15:08:04.030Z Has data issue: false hasContentIssue false

Polyimide Nanofoams For Low Dielectric Applications

Published online by Cambridge University Press:  15 February 2011

K. R. Carter
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
H. J. Cha
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
R. A. Dipietro
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
C. J. Hawker
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
J. L. Hedrick
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
J. W. Labadie
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
J. E. Mcgrath
Affiliation:
Virginia Tech, Department of Chemistry, Blacksburg, VA 24061-0344
T. P. Russell
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
M. I. Sanchez
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
S. A. Swanson
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
W. Volksen
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
D. Y. Yoon
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
Get access

Abstract

Foamed polyimides have been developed in order to obtain thin film dielectric layers with very low dielectric constants for use in microelectronic devices. In these systems the pore sizes are in the nanometer range, thus, the term “nanofoam”. The polyimide foams are prepared from block copolymers consisting of thermally stable and thermally labile blocks, the latter being the dispersed phase. Foam formation is effected by thermolysis of the thermally labile block leaving pores the size and shape corresponding to the initial copolymer morphology. Nanofoams prepared from a number of polyimides as matrix materials, were investigated as well as a number of thermally labile polymers. The foams were characterized by a variety of experiments including, TEM, SAXS, WAXD, DMTA, density measurements, refractive index measurements and dielectric constant measurements. Thin film foams, with high thermal stability and dielectric constants approaching 2.0, can be prepared using the copolymer/nanofoam approach.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Polymers for Electronic Applications, edited by Lai, J. H. (CRC Press, Boca Raton, Florida, 1989).Google Scholar
2. Herminghaus, S., Boeese, D., Yoon, D. Y., and Smith, B. A., Appl. Phys. Lett. 59, 104 (1991).Google Scholar
3. Haider, M., Chenevey, E., Vora, R. H., Cooper, W., Glick, M. and Jaffe, M., Mater. Res. Soc. Symp. Proc., 1991, 227, 379.Google Scholar
4. Auman, B. C. and Trofimenko, S., Polym. Prep. 34(2), 244 (1992).Google Scholar
5. Auman, B. C., Adv. Polyimide Sci. Technol., Proc. 4th Int. Conf. Polyimides, Meeting Date 1991, edited by Feger, C., Khojasteh, M. M., Htoo, M. S. (Publisher: Technomic, Lancaster, PA, 1993) pp 1532..Google Scholar
6. Smearing, R. W. and Floryan, D. C., US Patent No. 4 535 365 (1985).Google Scholar
7. Krutchen, C. M. and Wu, P., US Patent No. 4 535 100 (1985).Google Scholar
8. Hoki, T. and Matsuki, Y., European Patent No. 186308 (1986).Google Scholar
9. Meyers, R. A., J. Polym. Sci. A-1.7, 2757 (1969).Google Scholar
10. Carleton, P. S., Farrisey, W. J. and Rose, J. S., J. Appl. Polym. Sci. 16, 2983 (1972).Google Scholar
11. Narkis, M., Paterman, M., Boneh, H. and Kenig, S., Polym. Eng. Sci. 22, 417 (1982).Google Scholar
12. Gagliani, J. and Supkis, D. E., Adv. Astronaut. Sci. 38, 193 (1979).Google Scholar
13. Labadie, J. W., Hedrick, J. L., Wakharkar, V., Hofer, D. C. and Russell, T. P., IEEE Trans. Compon., Hybrids, Manuf. Technol. 15, 925 (1992).Google Scholar
14. Hedrick, J. L., Labadie, J. W., Russell, T. P., Hofer, D. C. and Wakharkar, V., Polymer 34, 4717 (1993).Google Scholar
15. Hedrick, J. L., Labadie, J. W., Russell, T. P., Wakharkar, V. and Hofer, D. C. in Avd. Polyimide Sci. Technol., Proc. Int. Conf. Polyimides, edited by Feger, C. L., M., M Khojasteh, Htoo, M. S. and Maung, S. (Technomic, Lancaster, PA, 1993).Google Scholar
16. Carter, K. R., Labadie, J. W., DiPietro, R. A., Sanchez, M. I., Russell, T. P., Swanson, S. A., Auman, B. C., Lakshmanan, P. and McGrath, J. E., Proc. Polym. Mat. Sci. Eng. 72, 383 (1995).Google Scholar
17. Jayaraman, S., Srinivas, S., Wilkes, G. L., McGrath, J. E., Hedrick, J. L., Volksen, W. and Labadie, J. W., Polym. Prep. 35(1), 347 (1994).Google Scholar
18. Volksen, W., Sanchez, M. I., Cha, H. J. and Yoon, D. Y., Polym. Prep. 36(1), 709 (1995).Google Scholar
19. Russell, T. P., Sanchez, M. I. and Hedrick, J. L., J. Polym Sci., Phys. Chem. 33(2), 247 (1995).Google Scholar