Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T07:34:58.326Z Has data issue: false hasContentIssue false

Polycrystalline Grain Structure of Sputtered Aluminum Nitride Films

Published online by Cambridge University Press:  15 February 2011

Asher T Matsuda
Affiliation:
Motorola Inc./Semiconductor Products Sector, 2100 E. Elliot Rd., Tempe, AZ 85284
H. Ming Liaw
Affiliation:
Motorola Inc./Semiconductor Products Sector, 2100 E. Elliot Rd., Tempe, AZ 85284
Wayne A Cronin
Affiliation:
Motorola Inc./Semiconductor Products Sector, 2100 E. Elliot Rd., Tempe, AZ 85284
Harland G Tompkins
Affiliation:
Motorola Inc./Semiconductor Products Sector, 2200 W. Broadway Rd., Mesa, AZ 85201
Peter L Fejes
Affiliation:
Motorola Inc./Semiconductor Products Sector, 2200 W. Broadway Rd., Mesa, AZ 85201
Keenan L Evans
Affiliation:
Motorola Inc./Semiconductor Products Sector, 5005 E. McDowell Rd., Phoenix, AZ 85008
Get access

Abstract

Reactively-sputtered, polycrystalline thin film aluminum nitride (AlN) is an attractive material for use in acoustic wave devices, for which it requires a strong preferred orientation, similar to that found in epitaxial films. This investigation evaluated the grain structure including preferred orientation, grain size, and surface morphology of sputtered A1N films. The characterization techniques utilized included x-ray diffraction (XRD), secondary ion mass spectroscopy (SIMS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The results revealed two types of grain structure: 1) a single-grain columnar structure that is perfectly oriented in the [001] direction throughout the entire film thickness and 2) a multiple-grain columnar structure that possesses a strong [001] orientation at the bottom of the film and a tilted [001] combined with other orientations at the top of the film. Strong correlations between orientation and surface morphology, oxygen content, and grain size were observed, namely higher degrees of c-axis orientation correlated with lower mean surface roughness values, reduced oxygen concentration, and narrower grains.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wang, J.S. and Lakin, K.M., IEEE 1981 Ultrasonics Symp. Proc., 502505 (1981).Google Scholar
2. Lakin, K.M., Wang, J.S., Kline, G.R., Landin, A.R., Chen, Y.Y., and Hunt, J.D., IEEE 1982 Ultrasonics Symp. Proc., 466475 (1982).Google Scholar
3. Lakin, K.M., Kline, G.R., Ketcham, R.S., Landin, A.R., Burkland, W.A., McCarron, K.T., Brayman, S.D., and Bums, S.G., 41st Annual IEEE Freq. Ctrl. Symp. Proc., 371381 (1987).Google Scholar
4. Kline, G.R., Lakin, K.M., and Ketcham, R.S., IEEE 1988 Ultrasonics Symp. Proc., 339342 (1988).Google Scholar
5. Krishnaswamy, S.V., Rosenbaum, J., Horwitz, S., Vale, C., and Moore, R.A., IEEE 1990 Ultrasonics Symp. Proc., 529536 (1990).Google Scholar
6. Liu, J.K., Lakin, K.M., and Wang, K.L., J. Appl. Phys. 26, 1555 (1987).Google Scholar
7. Tsubouchi, K. and Mikoshiba, N., IEEE Trans. Sonics and Ultrasonics SU–32, 634 (1985).Google Scholar
8. Kishi, M., Suzuki, M., and Ogawa, K., Jpn. J. Appl. Phys. 31 (pt. 1, no. 4), 11531159 (1992).Google Scholar
9. Aita, C.R., J. Appl. Phys. 53 (3), 18071808 (1982).Google Scholar
10. Kovacich, J.A., Kasperkiewicz, J., and Lichtman, D., J. Appl. Phys. 55 (8), 29352939 (1982).Google Scholar
11. Aita, C.R. and Gawlak, C.J., J. Vac. Sci. Technol. A 1 (2) 403406 (1983).Google Scholar
12. Kawabata, A., Jpn. J. Appl. Phys. 23 (supplement 23–1), 1722 (1984).Google Scholar
13. Krishnaswamy, S.V., Hester, W.A., Szedon, J.R., and Francombe, M.H., Thin Solid Films 125, 291298 (1985).Google Scholar
14. Ohuchi, F.S. and Russell, P.E., J. Vac. Sci. Technol. A 5 (4) 16301634 (1987).Google Scholar
15. Huffman, G.L., Fahnline, D.E., Messier, R., and Pilione, L.J., J. Vac. Sci. Technol. A 7 (3), 22522255 (1989).Google Scholar
16. Francombe, M.H. and Krishnaswamy, S.V., J. Vac. Sci. Technol. A 8 (3), 13821390 (1990).Google Scholar
17. Okano, H., Takahashi, Y., Tanaka, T., Shibata, K., and Nakano, S., Jpn. J. Appl, Phys. 31 (pt. 1, no. 10), 34463451 (1992).Google Scholar
18. Liaw, H.M., Cronin, W., and Hickernell, F.S., IEEE 1993 Ultrasonics Symp. Proc., 267271 (1993).Google Scholar
19. Klepeis, S.J., Benedict, J.P., and Anderson, R.M., Mat. Res. Symp. Proc. 115, 179184 (1988).Google Scholar