Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:26:46.690Z Has data issue: false hasContentIssue false

Polyanilines: In Situ Radiation and Thermal Induced Doping

Published online by Cambridge University Press:  22 February 2011

Marie Angelopoulos
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, New York 10598
Jane M. Shaw
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, New York 10598
Kam-Leung Lee
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, New York 10598
Get access

Abstract

Onium salts and amine triflate salts decompose upon exposure to radiation or thermal treatment respectively to generate protonic acids. These salts can be blended with polyaniline and upon decomposition the resulting acids act as insitu dopants for the polymer. These novel doping techniques eliminate the need for external dopant solutions and thereby simplify the processing of conducting polyaniline.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jen, Y., Oboodi, R., and Elsenbaumer, R.L., Polym. Materials & Sci. Eng. 53, 79 (1985).Google Scholar
2. Sato, M., Tanaka, S. and Kaeriyama, K., J. Chem. Soc. Chem. Commun. 295, 873 (1986).CrossRefGoogle Scholar
3. Yoshino, K., Nakajima, S., Fujii, M., and Sugimoto, R., Polymer Commun. 28, 309 (1987).Google Scholar
4. Wessling, B., Volk, H., Mathew, W.R., and Kulkarni, V.G., Mol. Cryst. Liq. Cryst. 160, 205 (1988).Google Scholar
5. Paul, E.J., Ricco, A.J., and Wrighton, M.S., J. Phys. Chem. 89, 1441 (1985).Google Scholar
6. Chiang, J.C. and MacDiarmid, A.G., Synth. Met. 13, 193 (1986).CrossRefGoogle Scholar
7. MacDiarmid, A.G., Chiang, J.C., Richter, A.F., and Epstein, A.J., Synth. Met. 18, 285 (1987).CrossRefGoogle Scholar
8. Angelopoulos, M., Ray, A., MacDiarmid, A.G., and Epstein, A.J., Synth. Met. 21, 21 (1987).Google Scholar
9. Angelopoulos, M., Asturias, G.E., Ermer, S.P., Ray, A., Scherr, E.M., and MacDiarmid, A.G., Mol. Cryst. Liq. Cryst. 160, 151 (1988).Google Scholar
10. Angelopoulos, M., Shaw, J.M, Kaplan, R.D., and Perreault, S., J. Vac. Sci. and Tech. B 7, 1519 (1989).CrossRefGoogle Scholar
11. Crivello, J.V. and Lam, J.H.W., Macromolec. 10, 1307 (1977).Google Scholar
12. Crivello, J.V. and Lam, J.H.W.,. J. Polym. Sci., Polym. Chem. Ed. 17, 977 (1979).CrossRefGoogle Scholar
13. Angelopoulos, M., Shaw, J.M, Huang, W.S., and Kaplan, R.D., Molec. Cryst. Liq. Cryst. 199, 221 (1990).Google Scholar
14. Stafstrom, S., Bredas, J.L., Epstein, A.J., Woo, H.S., Tanner, D.B., Huang, W.S., and MacDiarmid, A.G., Phys. Rev. Lett. 59, 13 (1987).Google Scholar
15. Epstein, A.J. and MacDiarmid, A.G., J. Mol. Elect. 4, 161 (1988).Google Scholar
16. AIm, R., Modern Paint and Coatings, October 1980.Google Scholar
17. Angelopoulos, M. and Shaw, J.M, European patent office published patent application EP-399299-A (28 November 1990).Google Scholar