Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:43:19.637Z Has data issue: false hasContentIssue false

Polyamic Acid Langmuir-Blodgett (LB) Films Containing A Stable Second-Order NLO Chromophore

Published online by Cambridge University Press:  10 February 2011

D. W. Cheong
Affiliation:
Center for Advanced Materials, Department of Chemistry and Physics
J. -I Chen
Affiliation:
Center for Advanced Materials, Department of Chemistry and Physics
J. Kumar
Affiliation:
University of Massachusetts Lowell, Lowell, MA 01854
S. K. Tripathy
Affiliation:
Center for Advanced Materials, Department of Chemistry and Physics
Get access

Abstract

Nonlinear optical (NLO) LB films of polyamic acid containing a stable NLO dye were prepared and imidized either chemically or thermally. The optical properties and molecular orientation of these LB films were studied. From the absorption spectra, we infer that the derivative of the pnitroazobenzene chromophore covalently attatched to polyamic acid did not show significant aggregation. Quadratic dependence of SHG on the number of layers in polyamic acid films indicated the noncentrosymmetric organization of polar NLO chromophores. A second-order nonlinear coefficient (d33) of 23.4 pm/V was observed at 1064 nm after absorption correction. In polyimide films, SH intensity was dramatically reduced due to the collapse of the layered structure upon imidization process. In-plane isotropy of the LB films of polyamic acid and polyimide were lost upon irradiation of polarized light.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ashwell, G. J., Jefferies, G., Hamilton, D. G., Lynch, D. E., Roberts, M. P. S., Bahra, G. S., and Brown, C. R., Nature, 375, 385 (1995).Google Scholar
2. Pitt, C. W., Walpita, L. M., Thin Solid Films, 68, 101 (1980).Google Scholar
3. Hodge, P., Khoshdel, E., Tredgold, R. H., Vickers, A. J., and Winter, C. S., British Polymer J., 17, 368 (1985).Google Scholar
4. Clays, K., Armstrong, N. J., Ezenyilimba, M. C., and Penner, T. L., Chem. Mater., 5, 1032 (1993).Google Scholar
5. Lupo, D., Prass, W., and Scheunemann, U., Thin Solid Films, 178, 403 (1989).Google Scholar
6. Kakimoto, M., Suzuki, M., Imai, Y., Iwamoto, M., and Hinto, T., Polym. Mater. Sci. Eng., 55, 420 (1986).Google Scholar
7. Takano, K., Mikogami, Y., Nakano, Y., Hayase, R., and Hayase, S., J. Applied Polymer Science, 46, 1137 (1992).Google Scholar
8. Nishikata, Y., Morikawa, A., Takiguchi, Y., Kanemoto, A., Kakimoto, M., and Imai, Y., Jpn. J. Applied Physics, 27 (7), 1163 (1988).Google Scholar
9. Blonov, L., Dubinin, N. V., Mikhnev, L. V., Yudin, S. G., Thin Solid Films, 120, 161 (1984).Google Scholar
10. Liu, Z. F., Hashimoto, K., and Fujishima, A., Nature, 347, 658 (1990).Google Scholar
11. Seki, T., Fukuda, R., Tamaki, T., and Ichimura, K., Thin Solid Films, 243, 675 (1994).Google Scholar
12. Yokoyama, S., Kakimoto, M., and Imai, Y., Langmuir, 9, 1086 (1993).Google Scholar
13. Tamada, T., Yokoyama, S., Kajikawa, K., Ishikawa, K., Takezoe, H., Fukuda, A., Kakimoto, M., and Imai, Y., Thin Solid Films, 244, 754 (1994).Google Scholar
14. Palto, S. P., Yudin, S. G., Germain, C., and Durand, G., J. Phys. II France, 5, 133 (1995).Google Scholar
15. Anderson, B. L., Hoover, J. M., Lindsay, G. A., Higgins, B. G., Stroeve, P., Kowel, S. T., Thin Solid Films, 179, 413 (1989).Google Scholar
16. Girling, I. R., Cade, N. A., Kolinsky, P. V., Earls, J. D., Cross, G. H., and Peterson, I. R., Thin Solid Films, 132, 101 (1985).Google Scholar
17. Aktsipetrov, O. A., Mishina, E. D., Murzina, T. V., Akhmediev, N. N., and Novak, V. R., Thin Solid Films, 256, 176 (1995).Google Scholar