Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T01:47:25.406Z Has data issue: false hasContentIssue false

Poled Polyimides for Thermally Stable Electro-Optic Materials

Published online by Cambridge University Press:  25 February 2011

J. W. Wu
Affiliation:
Lockheed Palo Alto Research Laboratory, O-9702, B-202, 3251 Hanover Street, Palo Alto, CA 94304
J. F. Valley
Affiliation:
Lockheed Palo Alto Research Laboratory, O-9702, B-202, 3251 Hanover Street, Palo Alto, CA 94304
M. Stiller
Affiliation:
Lockheed Palo Alto Research Laboratory, O-9702, B-202, 3251 Hanover Street, Palo Alto, CA 94304
S. Ermer
Affiliation:
Lockheed Palo Alto Research Laboratory, O-9702, B-202, 3251 Hanover Street, Palo Alto, CA 94304
E. S. Binkley
Affiliation:
Lockheed Palo Alto Research Laboratory, O-9702, B-202, 3251 Hanover Street, Palo Alto, CA 94304
J. T. Kenney
Affiliation:
Lockheed Palo Alto Research Laboratory, O-9702, B-202, 3251 Hanover Street, Palo Alto, CA 94304
G. F. Lipscomb
Affiliation:
Lockheed Palo Alto Research Laboratory, O-9702, B-202, 3251 Hanover Street, Palo Alto, CA 94304
R. Lytel
Affiliation:
Lockheed Palo Alto Research Laboratory, O-9702, B-202, 3251 Hanover Street, Palo Alto, CA 94304
Get access

Abstract

Using polyimide as host in a guest-host electro-optic (EO) thin film a thermally stable poled electro-optic response is demonstrated at temperatures at 150 °C and 300 °C. Electric field poling during curing process including imidization (170 -230 °C) and densification (340 -380 °C) accounts for the highly thermally stable EO response. As a room temperature curing process, chemical imidization is employed as a novel curing process. Dehydration occurring through imidization of the polyamic acid is completed chemically after poling rather than thermally during poling. After thermal aging at 155 °C (above the poling temperature) chemically imidized samples retain over 30% of their original poling induced EO signal while similarly poled samples, which have not been chemically imidized, produce a null EO response. For a class of polyimides possessing aliphatic structure, the thermoplastic behavior of cured guest-host polyimide system allowed the electric field poling at temperatures above the glass transition temperature (Tg). One example of polyimide doped with 10% nonlinear optical molecules exhibits Tg near 200 °C, leading to an excellent thermal stability of the poled EO response with a depoling knee-temperature of 150°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Thackara, J.I., Lipscomb, G.F., Stiller, M.A., Ticknor, A.J., and Lytel, R., Appl. Phys. Lett. 52, 1031 (1988)Google Scholar
[2] Van Eek, T.E., Ticknor, A.J., Lytel, R.S., and Lipscomb, G.F., Appl. Phys. Lett. 58, 1558 (1991)Google Scholar
[3] Girton, D.G., Kwiatkowski, S., Lipscomb, G.F., and Lytel, R., Appl. Phys. Lett. 58, 1730 (1991)Google Scholar
[4] Singer, K.D., Kuzyk, M.G., and Sohn, J.E., J. Opt. Soc. Am. B4, 968 (1987)Google Scholar
[5] Wu, J.W., J. Opt. Soc. Am., B8, 142 (1991)Google Scholar
[6] Lalama, S.J. and Garito, A.F., Phys. Rev. A20, 1179 (1979)Google Scholar
[7] Valley, J. F., Wu, J. W., and Valencia, C. L., Appl. Phys. Lett. 57, 1084 (1990)Google Scholar
[8] Gibbs, J.H. and DiMarzino, E.A., J. Chem. Phys., 28, 373 (1958)Google Scholar
[9] Möhlmann, G.R., Horsthuis, W.H.S., van der Vorst, C.P.J.M., McDonach, A., Copeland, M., Duchet, C, Fabre, P., Diemeer, M.B.J., Trommel, E.S., Suyten, F.M.M., Van Daele, P., Van Tomme, E., and Baets, R., Nonlinear Optical Properties of Organic Materials II, SPIE Conf. 1147, 245 (1989).Google Scholar
[10] Jungbauer, D., Reck, B., Twieg, R., Yoon, D. Y., Wilson, C. G., and Swalen, J. D., Appl. Phys. Lett. 56, 2610 (1990).Google Scholar
[11] Mandai, B.K., Chen, Y.M., Lee, J.Y., Kumar, J., and Tripathy, S., App. Phys. Lett. 58, 2459 (1991)Google Scholar
[12] McCrum, N.G., Read, B.E., Williams, G., Anelastic and Dielectric Effects in Polymeric Solids, (John Wiley &Sons, London, 1967)Google Scholar
[13] Lytel, R., Lipscomb, G.F., Binkley, E.S., Kenney, J.T., and Ticknor, A.J., in Materials for Nonlinear Optics: Chemical Perspectives, edited by Marder, S.R., Sohn, J.E., and Stucky, G.D. (Am. Chem. Soc., ACS Symposium Series 455, Washington, DC, 1991), pp. 103112 Google Scholar
[14] Manzione, L.T., Plastic Packaging of Microelectronic Devices, (Van Nostrand Reinhold, New York, 1990) Chapter 3.Google Scholar
[15] Husain, A., Microelectronic Interconnects and Packaging: System Integration, SPIE Conf. Vol. 1390 (1990)Google Scholar
[16] Polymeric Materials for Electronics Packaging and Interconnection. Lupinski, J.H. and Moore, R.S., eds., Vol. 407 of American Chemical Society Symposium (ACS, Washington, D.C., 1989).Google Scholar
See also Polvimides, Vol.1 &2, Mittal, K.L., ed.(Plenum Press, New York, 1984).Google Scholar
[17] Isoda, S., Shimada, H., Kochi, M., and Kambe, H., J. Polymer Science: Polymer Phys. Edi. 19, 1293 (1981)Google Scholar
[18] Wu, J.W., Valley, J.F., Ermer, S., Binkley, E.S., Kenney, J.T., Lipscomb, G.F., and Lytel, R., Appl. Phys. Lett. 58, 225 (1991).Google Scholar
[19] Wu, J.W., Binkley, E.S., Kenney, J.T., Lytel, R., and Garito, A.F., J. of Appl. Phys. 69, 7366(1991)Google Scholar
[20] Wu, J.W., Valley, J.F., Ermer, S., Binkley, E.S., Kenney, J.T., and Lytel, R., Appl. Phys. Lett. 59, 2213 (1991)Google Scholar
[21] Bessonov, M.I., Koton, M.M., Kurdryavtsev, V.V., and Laius, L.A., Polvimides Thermally Stable Polymers, Consultants Bureau, New York (1987)Google Scholar
[22] Mazur, S., Lugg, P. S., and Yarnitzky, C, J. Electrochem. Soc. 134, 346 (1987)Google Scholar
[23] Valley, J.F., Wu, J.W., Ermer, S., Stiller, M., Binkley, E.S., Kenney, J.T., Lipscomb, G.F., and Lytel, R., Appl. Phys. Lett. 60, (1992) In press Google Scholar
[24] Ferry, J.D., Viscoelastic Properties of Polymers, 3rd ed. (Wiley, New York, 1980)Google Scholar