Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T05:47:15.654Z Has data issue: false hasContentIssue false

Polarons and Triplet Excitons in C60: An Optically Detected Magnetic Resonance (Odmr) and Light-Induced Esr (Lesr) Study

Published online by Cambridge University Press:  25 February 2011

P. A. Lane
Affiliation:
Ames Laboratory - USDOE and Physics Department, Iowa State University, Ames, IA 50011
L. S. Swanson
Affiliation:
Ames Laboratory - USDOE and Physics Department, Iowa State University, Ames, IA 50011
Q.-X. Ni
Affiliation:
Ames Laboratory - USDOE and Physics Department, Iowa State University, Ames, IA 50011
J. Shinar
Affiliation:
Ames Laboratory - USDOE and Physics Department, Iowa State University, Ames, IA 50011
J Engel
Affiliation:
Ames Laboratory - USDOE and Chemistry Department, Iowa State University, Ames, IA 50011
T. J. Barton
Affiliation:
Ames Laboratory - USDOE and Chemistry Department, Iowa State University, Ames, IA 50011
J. Wheelock
Affiliation:
Ames Laboratory - USDOE, Iowa State University, Ames, IA 50011
L. Jones
Affiliation:
Ames Laboratory - USDOE, Iowa State University, Ames, IA 50011
Get access

Abstract

The photoluminescence (PL), X-band ODMR. and LESR of C60 films and C60 isolated in a toluene/polystyrene glass matrix (C60:T/PS) is described. The delocalized triplet LESR and ODMR of C60:T/PS are similar to previously reported LESR. In films, however, the ODMR indicates that the delocalized triplet is larger and distorted by neighboring molecules. In addition, another, localized triplet, and a narrow PL-enhancing line at g = 2.0017 ± 0.0005 are observed. These features are similar to those observed in several π-conjugated polymers. The former is attributed to a localized triplet of size similar to a 5- or 6-membered ring, tentatively on a face adjacent to another C60 molecule; the latter is believed to result from intermolecular polaron recombination.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Arbogast, J. W., Darmanyan, A. P., Foote, C. S., Rubin, Y., Diederich, F. N., Alvarez, M. M., Anz, S. J., andWhetten, R. L., J. Phys. Chem 95, 11 (1991).Google Scholar
2. Reber, C., Yee, L., MeKiernan, J., Zink, J. I., Williams, R. S., Tong, W. M., Ohlberg, D. A. A., Whetten, R. L., and Diederich, F., ibid., 2127.Google Scholar
3. Sension, R. J., Phillips, C. M., Szarka, A. Z., Romanow, W. J., McGhie, A. R., McCauley, J. P. Jr., Smith, A. B. III, and Hochstrasser, R. M., ibid., 6075.Google Scholar
4. Greaney, M. A. and Gorun, S. M., ibid., 7142.Google Scholar
5. Wei, X., Viner, J., Vardeny, Z. V., Moses, D., Srdanov, V. I., and Wudl, F., Syn. Met. (in press).Google Scholar
6. Allemand, P. M., Srdanov, G., Koch, A., Khemani, K., and Wudl, F., J. Am. Chem. Soc. 113, 2780 (1991).Google Scholar
7. Keizer, P. N., Morton, J. R., Preston, K.F., and Sugden, A. K., J. Phys. Chem 95, 7117 (1991).CrossRefGoogle Scholar
8. Krusic, P. J., Wasserman, E., Parkinson, B. A., Malone, B., and Holler, E. R. Jr., J. Am. Chem. Soc. 113, 6274 (1991).CrossRefGoogle Scholar
9. Wasielewski, M. R., O'Neil, M. P., Lykke, K. R., Pellin, M. J., and Gruen, D. M., ibid., 2774.Google Scholar
10. Lane, P. A., Swanson, L. S., Ni, Q.-X., Shinar, J., Engel, J. P., Barton, T. J., Wheelock, J. and Jones, L., Phys. Rev. Lett. 68, 887 (1992).Google Scholar
11. Bethune, D. S. et al. , Chem. Phys. Lett. 174, 219 (1990).CrossRefGoogle Scholar
12. Hung, R. R. and Grabowski, J. J., J. Phys. Chem. 95, 6073 (1991).Google Scholar
13. Swanson, L. S., Shinar, J., and Yoshino, K., Phys. Rev. Lett. 65, 1140 (1990).Google Scholar
14. Swanson, L. S., Lane, P. A., Shinar, J., and Wudl, F., Phys. Rev. B 44, 10617 (1991).Google Scholar
15. Shinar, J. and Swanson, L. S., Syn. Met. (in press); L. S. Swanson et al., ibid.; L. S. Swanson, Ph.D. Thesis, Iowa State University (1991), unpublished.Google Scholar
16. Kratschmer, W., Lamb, L. D., Fostiropoulos, K., and Huffman, D. R., Nature 347, 354 (1990).Google Scholar
17. Kratschmer, W. et al. , Chem. Phys. Lett. 170, 167 (1990).Google Scholar
18. Haufler, R. E. et al. , J. Phys. Chem. 94, 8634 (1990).Google Scholar
19. Koch, A. S., Khemani, K. C., and Wudl, F., J. Org. Chem. 56, 4543 (1991).CrossRefGoogle Scholar
20. Hare, J. P., Kroto, H. W., and Taylor, R., Chem. Phys. Lett. 177, 394 (1991)Google Scholar
21. Baldwin, D. and McClelland, J. F., unpublished results.Google Scholar
22. Carrington, A. and McLachlan, A. D., Introduction to Magnetic Resonance (Harper and Row, NY, 1967), Chap. 8; N. M. Atherton, Electron Spin Resonance, (Halstead, NY, 1973); D. R. Torgeson et al., J. Magn. Reson. 68, 85 (1986); P. C. Taylor et al., Chem. Rev. 75, 203 (1975).Google Scholar
23. Pcole, C. P., Electron Spin Resonance - A Comprehensive Treatise on Experimental Techniques, 2nd Edition (John Wiley, NY, 1983).Google Scholar
24. Heeger, A. J., Kivelson, S., Sehrieffer, J. R., and Su, W.-P., Rev. Mod. Phys. 60, 781 (1988).CrossRefGoogle Scholar
25. Friedman, B., Phys. Rev. B 45, 1454 (1992).CrossRefGoogle Scholar