Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T13:14:31.882Z Has data issue: false hasContentIssue false

Polarization-dependent spectroscopy of the near-bandgap excitonic emission in free standing GaN

Published online by Cambridge University Press:  01 February 2011

P. P. Paskov
Affiliation:
Department of Physics and Measurement Technology, Linköping University, S-581 83 Linköping, Sweden
T. Paskova
Affiliation:
Department of Physics and Measurement Technology, Linköping University, S-581 83 Linköping, Sweden
P. O. Holtz
Affiliation:
Department of Physics and Measurement Technology, Linköping University, S-581 83 Linköping, Sweden
B. Monemar
Affiliation:
Department of Physics and Measurement Technology, Linköping University, S-581 83 Linköping, Sweden
Get access

Abstract

We report a comparative study of the exciton emission in free standing HVPE layer for all polarization configurations. A noticeable difference between the emission spectra polarized perpendicular and parallel to the c-axis of the crystal is observed. The spectra for E┴c and EIIc are found to be dominated by the emissions of the donor-bound exciton and exciton-polariton both arising from the A and B valence band, respectively, which clearly reveals the optical selection rules in wurtzite GaN. The temperature evolution of the emission spectra is also examined and the thermal redistribution of the excitons at different polarization is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kornitzer, K., Ebner, T., Thonke, K., Sauer, R., Kirchner, C., Schwegler, V., Kamp, M., Leszczynski, M., Grzegory, I., and Porovski, S., Phys. Rev. B 60, 1471 (1999).Google Scholar
2. Reshchikov, M., Huang, D., Yun, F., He, L., Morkoç, H., Reynolds, D. C., Park, S. S., and Lee, K. Y., Appl. Phys. Lett. 79, 3779 (2001).Google Scholar
3. Freitas, J. A. Jr, Moore, W. J., Shanabrook, B. V., Braga, G. C. B., Lee, S. K., Park, S. S., and Han, J. Y., Phys. Rev. B 66, 233311 (2002).Google Scholar
4. Reynolds, D. C., Look, D. C., Jogai, B., Saxler, A. W., Park, S. S., and Hahn, J. Y., Appl. Phys. Lett. 77, 2879 (2000).Google Scholar
5. Paskov, P. P., Paskova, T., Holtz, P. O., and Monemar, B., Phys. Rev. B 64, 115201 (2001).Google Scholar
6. Shubina, T. V., Paskova, T., Toropov, A. A., Ivanov, S. V., and Monemar, B., Phys. Rev. B 65, 075212 (2002).Google Scholar
7. Reynolds, D. C., Hoelscher, J., Litton, C. W., and Collins, T. C., J. Appl. Phys. 92, 5596 (2002).Google Scholar
8. Paskov, P. P., Paskova, T., Holtz, P. O., and Monemar, B., Proc. of the PLMCN-3, Acireale, Italy, Oct. 1–4, 2003, Phys. Status Solidi (to be published)Google Scholar
9. Thomas, D. G. and Hopfield, J. J., Phys. Rev. 128, 2135 (1962).Google Scholar
10. Cho, K., Phys. Rev. B 14, 4463 (1976).Google Scholar
11. Guillaume, C. Benoit a la, Bonnot, A., and Debever, J. M., Phys. Rev. Lett. 24, 1235 (1970).Google Scholar
12. Leroux, M., Grandjean, N., Beaumont, B., Nataf, G., Massies, J., and Gibart, P., J. Appl. Phys. 86, 3721 (1999).Google Scholar