Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:42:39.676Z Has data issue: false hasContentIssue false

Plutonium Incineration in LWR's by a Once-Through Cycle with a Rock-Like Fuel

Published online by Cambridge University Press:  15 February 2011

C. Degueldre
Affiliation:
also University of Geneva, 1211 Geneva, Switzerland.
U. Kasemeyer
Affiliation:
Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland.
F. Botta
Affiliation:
Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland.
G. Ledergerber
Affiliation:
Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland.
Get access

Abstract

Plutonium incineration in a uranium-free fuel by a once-through burning cycle in LWR’s followed by geological disposal of the rock-like material as a high level waste is discussed here. For burning plutonium of various origins, zirconium oxide is a promising candidate as inert matrix because it is stabilised by rare earth oxides (Er, Ho, Eu … Y) in a single phase solid solution with a stable cubic structure. In this material, selected rare earth isotopes can also act as burnable poisons. The spent fuel may be licensed as waste material on the basis of the inventory, the stability of the material and the behaviour of natural analogue material (e.g. baddeleyite). A fuel composed of 90-80% ZrO2, 7–14% PuO2 and 3–6% Er2O3 (At%), with potential addition of Y2O3 (as additional stabiliser), is suggested for experimental study. Such a fuel employed in LWR's could generate power effectively while transmuting about 95% of the 239Pu

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Albright, D., Berkhout, F. and Walker, W.. World inventory of plutonium and highly enriched uranium, 1992. Stockholm International Peace Research Institute, Oxford University Press, Oxford, 1993.Google Scholar
2. OECD. Les aspects économiques du cycle du combustible nucléaire. Agence de I'OCDE pour l'énergie nucléaire, Paris, France, 1994.Google Scholar
3. National Academy of Sciences (USA), Management and disposition of excess weapons plutonium. National Academy Press, Washington, D.C., USA, 1994.Google Scholar
4. Bouchard, J.. Proc. Int. ENS topical meeting on next generation LWR's (TOPNUX'93), La Hague, France, 1993.Google Scholar
5. Paratte, J.M. and Chawla, R.. Ann. Nucl. Energy 22, 471481, 1995.Google Scholar
6. Akie, H., Muromura, T., Takano, H. and Matsuura, S.. Nuclear Technology, V 107, 182192 (1994).Google Scholar
7. Paratte, J.M., Foskolos, K., Grimm, P., Maeder, C.. Das PSI-Code system ELCOS zur stationaren Berchnung von Leichtwasserreaktoren. Proc. Jahrestagung Ferntechnik, Travenmuende (1988).Google Scholar
8. Pelloni, S., Grimm, P., Mathews, D. and Paratte, J.–M.. Nucl. Technol. 94, 1527, 1991.Google Scholar
9. Paratte, J. M., Kasemeyer, U., Grimm, P., Degueldre, C., Chawla, R.. Characteristics of plutonium burning MOX and uranium-free PWRs. Proc. of the workshop: Advanced fuel cycles, Sept. 18-19, 1995, Paul Scherrer Institute, Villigen, Switzerland. 128142.Google Scholar
10. Subbarao, E.. (1981): Zirconia - an overview. In: Advances in Ceramics, Vol.3, Eds: Heuers, A., Hobbs, L, 1981.Google Scholar
11. Yokokawa, H., Sakai, N., Kawada, T. and Dokiya, M.. J. Austral. Ceram. Soc. 28 (1) 194, 1992.Google Scholar
12. Wittels, M. and Sherrill, F.. J. Appl. Phys. 27, 643644, 1956.Google Scholar
13. Berman, R., Bleiberg, M. and Yeniscavich, W.. J. Nucl. Mat. 2, 129140, 1960.Google Scholar
14. Adair, J., Denkewicz, R. and Arriagada, F.. In: Ceramic Transactions Vol.1 Ceramic Powder Sciences II, Messing et al., 1988, part A 135145.Google Scholar
15. Nagra. Kristalline I. Nagra Technical Report. NTB-93-09, Wettingen, Switzerland, 1994.Google Scholar
16. Schweingruber, M. M.Löslichkeits - und Speziationsberchnungen für U, Pu, Np und Th in natürlichen Grundwässern - Theorie, thermodynamische Dateien und erste Anwendungen. EIR-Bericht Nr. 449, PSI, Switzerland, 1981.Google Scholar
17. Wesolowski, D. and Palmer, D.. Geochim. Cosmochim. Acta 58 (14) 29472969, 1994.Google Scholar
18. Xue, L., Meyer, K. and Chen, I.W.. J. Am. Ceram. Soc. 75 (4) 822829, 1992.Google Scholar
19. Kamo, S., Gower, C. and Krogh, T.. Geology 17, 602605, 1989.Google Scholar
20. Akie, H., Muromura, T., Takano, H., Matsuura, S.. Proc. Seventh International Conference on Emerging Nuclear Systems. Chiba, Japan, 10–14, 1993.Google Scholar