Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-17T15:21:16.996Z Has data issue: false hasContentIssue false

Plasma-Initiated Laser Deposition of Polycrystalline and Monocrystalline Silicon Films*

Published online by Cambridge University Press:  21 February 2011

J. M. Gee
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
P. J. Hargis Jr.
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
M. J. Carr
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
D. R. Tallant
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
R. W. Light
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

In this paper we report a new method of silicon deposition using the interaction between the radiation from a pulsed-ultraviolet excimer laser and the plasma species produced in a glow discharge in silane (SiH4). Examination of the deposited film by laser Raman spectroscopy and by transmission electron microscopy revealed that the morphology ranged from polycrystalline silicon at laser fluences of 0.13–0.17 J/cm2 to epitaxial silicon at fluences of 0.4–0.6 J/cm2 . Growth rates of 100 nm/min for polycrystalline silicon and 30 nm/min for monocrystalline silicon were achieved.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This work performed at Sandia National Laboratories supported by the U. S. Department of Energy under contract number DE-AC04-76DP00789.

References

REFERENCES

1. See, for example, R. Osgood, M., Brueck, S. R. J., and Schlossberg, H. R., eds., Laser Diagnostics and Photochemical Processing for Semiconductor Devices, Mat. Res. Soc. Proc. 17 (1983).Google Scholar
2. Andreatta, R. W., Abele, C. C., Osmuncsen, J. F., Eden, J. G., Lubben, D., and Greene, J. E., Appl. Phys. Lett. 40, 183185 (1982).CrossRefGoogle Scholar
3. Bauerle, D., Irsigler, P., Leyendecker, G., Noll, H., and Wagner, D., Appl. Phys. Lett. 40, 819821 (1982).CrossRefGoogle Scholar
4. Ehrlich, D. J., Osgood, R. M. Jr., and Deutsch, T. F., Appl. Phys. Lett. 39, 957959 (1981).CrossRefGoogle Scholar
5. Hanabusa, M., Namiki, Akira, and Yoshihara, Keitaro, Appl. Phys. Lett. 35, 626627 (1979).CrossRefGoogle Scholar
6. Christensen, C. P. and Lakin, K. M., Appl. Phys. Lett. 32, 254256 (1978).CrossRefGoogle Scholar
7. Ianno, N. J., Verdeyen, J. T., Chan, S. S., and Streetman, B. G., Appl. Phys. Lett. 39, 622624 (1981).CrossRefGoogle Scholar
8. Allen, S. D., J. Appl. Phys. 52, 65016505 (1981).CrossRefGoogle Scholar
9. Morhange, J. F., Kanellis, G., and Balkanshi, M., Solid State Commun. 31, 805808 (1979).CrossRefGoogle Scholar
10. Kamiya, T., Kishi, M., Ushirokawa, A., and Katoda, K., Appl. Phys. Lett. 35, 377–79 (1981).Google Scholar
11. Harbeke, G., Krausbauer, L., Steigmeier, E. F., Widmer, A. E., Kappert, H. F., and Neugebauer, G., Appl. Phys. Lett. 42, 249251 (1983).CrossRefGoogle Scholar
12. Murphy, D. V. and Brueck, S.R.J., Mat. Res. Soc. Symp. Proc. 17, 8194 (1983).CrossRefGoogle Scholar
13. Tallant, D. R. and Higgins, K. L., to be published in the proceedings of the International Congress on Applications of Lasers and Electro- Optics, November 14–17, 1983, Los Angeles, Ca.Google Scholar
14. Ehrlich, D. J., Brueck, S.R.J., and Tsao, J. Y., Mat. Res. Soc. Symp. Proc. 13, 191196 (1983).CrossRefGoogle Scholar