Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T21:54:01.430Z Has data issue: false hasContentIssue false

Plasma-Enhanced Chemical Vapor Deposition of High Quality Cubic BN Films with an Intermediate Layer of Turbostratic BN Thinner than 3 nm

Published online by Cambridge University Press:  11 February 2011

Hangsheng Yang
Affiliation:
Department of Materials Engineering, School of Engineering, The University of Tokyo, Hongo, 7–3–1, Bunkyo-ku, Tokyo 113–8656, Japan.
Chihiro Iwamoto
Affiliation:
Engineering Research Institute, School of Engineering, The University of Tokyo, Yayoi, 2–11–16, Bunkyo-ku, Tokyo 113–8656, Japan.
Toyonobu Yoshida
Affiliation:
Department of Materials Engineering, School of Engineering, The University of Tokyo, Hongo, 7–3–1, Bunkyo-ku, Tokyo 113–8656, Japan.
Get access

Abstract

Cubic boron nitride (cBN) thin films were deposited on silicon wafers by low-pressure inductively coupled plasma-enhanced chemical vapor deposition (ICP-CVD). By using special substrate pre-treatment processes including positive biasing treatment in H2 plasma or 1200 K pre-heating in H2 atmosphere followed by an N2 plasma treatment, turbostratic BN (tBN) intermediate layer was revealed to directly grow on Si substrates without an initial amorphous layer. The thickness of the tBN transition layer can be reduced to less than 3 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Inagawa, K., Watanabe, K., Ohsone, H., Saitoh, K., Itoh, A., J. Vac. Sci. Technol. A5 2696 (1987).Google Scholar
2. Mieno, M., Yoshida, T., Jpn. J. Appl. Phys. 29, L1175 (1990).Google Scholar
3. Kester, D. J., Ailey, K. S., Davis, R. F., More, K. L., J. Mater. Res. 8, 1213 (1993).Google Scholar
4. Ichiki, T., Mosose, T., Yoshida, T., J. Appl. Phys. 75, 1330 (1994).Google Scholar
5. Yamada, Y., Tsuda, O., Tatebayashi, Y., Yoshida, T., Thin Solid films 259, 137 (1997).Google Scholar
6. Ichiki, T., Amagi, S., Yoshida, T., J. Appl. Phys. 79, 4381 (1996).Google Scholar
7. Yoshida, T., Diamond Relat. Mater. 5, 501 (1996).Google Scholar
8. Yoshida, T., Diamond Films and Technology 7, 87 (1997).Google Scholar
9. Matsumoto, S., Zhang, W. J., Jpn. J. Appl. Phys. 39, L442 (2000).Google Scholar
10. Kester, D. J., Ailey, K. S., Davis, R. F., More, K. L., J. Mater. Res. 8, 1213 (1993).Google Scholar
11. Mirkarimi, P. B., Medlin, D. L., McCarty, K. F., Appl. Phys. Lett. 66, 2813 (1995).Google Scholar
12. Feldermann, H., Ronning, C., Hofsass, H., J. Appl. Phys. 90, 3248 (2001).Google Scholar
13. Iwamoto, C., Yang, H.S., Yoshida, T., Diamond Relat. Mater. 11, 1854 (2002).Google Scholar
14. Yang, H. S., Iwamoto, C., Yoshida, T., J. Appl. Phys. 91, 6695 (2002).Google Scholar
15. Yang, H. S., Iwamoto, C., Yoshida, T., Thin solidfilms 407, 67 (2002).Google Scholar
16. Yang, H. S., Iwamoto, C., Yoshida, T., to be submitted.Google Scholar