Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-20T05:03:01.315Z Has data issue: false hasContentIssue false

Plasma-Assisted MBE of GaN and AlGaN on 6H SiC(0001)

Published online by Cambridge University Press:  21 February 2011

S. Sinharoy
Affiliation:
Westinghouse Science & Technology Center, 1310 Beulah Road, Pittsburgh, PA 15235
A. K. Agarwal
Affiliation:
Westinghouse Science & Technology Center, 1310 Beulah Road, Pittsburgh, PA 15235
G. Augustine
Affiliation:
Westinghouse Science & Technology Center, 1310 Beulah Road, Pittsburgh, PA 15235
L. B. Rowland
Affiliation:
Westinghouse Science & Technology Center, 1310 Beulah Road, Pittsburgh, PA 15235
R. L. Messham
Affiliation:
Westinghouse Science & Technology Center, 1310 Beulah Road, Pittsburgh, PA 15235
M. C. Driver
Affiliation:
Westinghouse Science & Technology Center, 1310 Beulah Road, Pittsburgh, PA 15235
R. H. Hopkins
Affiliation:
Westinghouse Science & Technology Center, 1310 Beulah Road, Pittsburgh, PA 15235
Get access

Abstract

The growth of undoped and doped GaN and AlGaN films on off-axis 6H SiC substrates was investigated using plasma-assisted molecular beam epitaxy (MBE). Smooth and crack-free GaN and AlGaN films were obtained; the best results occurred at the highest growth temperature studied (800°C) and with a 40 to 50 nm A1N buffer layer grown at the same temperature. Carrier concentrations of up to n = 4 × 1020 cm−3 were accomplished with silicon, with a 40 to 50% activation rate as determined by secondary ion mass spectrometry (SIMS). Unintentionally doped AlxGa,.xN (x≈0.1) was n-type with a carrier concentration of 7 × 1018 cm−3. N-type AlGaN (x≈0.1)/p-type 6H SiC (0001) heterostructures showed excellent junction characteristics with leakage currents of less than 0.1 nA at 5 V reverse bias at room temperature and 0.5 nA at 200°C operating temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Nakamura, S., Mukai, T., and Senoh, M., J. Appl. Phys. 76, 8189 (1994).Google Scholar
2 Molnar, R. J., Singh, R., and Moustakas, T. D., Appl. Phys. Lett. 66, 268 (1995).Google Scholar
3 Johnson, M. A. L., Fujita, S., Rowland, W. H. Jr., Bowers, K. A., Hughes, W. C., He, Y. W., El Masry, N. A., Cook, J. W. Jr., Schetzina, J. F., Ren, J., and Edmond, J. A., to be published in J. Vac. Sci. Technol. B.Google Scholar
4 van Hove, J. M., Carpenter, G., Nelson, E., Wowchak, A., and Chow, P. P., to be published in J. Vac. Sci. Technol. B.Google Scholar
5 Khan, M. A., Kuznia, J. N., Bhattarai, A. R., and Olson, D. T., Appl. Phys. Lett. 62, 1786 (1993).Google Scholar
6 Binari, S. C., Rowland, L. B., Kruppa, W., Kelner, G., Doverspike, K., and Gaskill, D. K., Electronics Lett. 30, 1248 (1994).Google Scholar
7 Khan, M. A., Shur, M. S., Kuznia, J. N., Chen, Q., Burm, J., and Schaff, W., Appl. Phys. Lett. 66, 1083 (1995).Google Scholar
8 Özgür, A., Kim, W., Fan, Z., Botchkarev, A., Salvador, A., Mohammad, S. N., Sverdlov, B., and Morkoç, H., Electronics Lett. 31, 1389 (1995).Google Scholar
9 Pankove, J., Chang, S. S., Lee, H. C., Molnar, R. J., Moustakas, T. D., and Van Zeghbroeck, B., IEDM-94, 389 (1994).Google Scholar
10 Nakamura, S., Iwasa, N., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys. 31, 1258 (1992).Google Scholar
11 Hughes, W. C., Rowland, W. H. Jr., Johnson, M. A. L., Fujita, S., Cook, J. W. Jr., and Schetzina, J. F., J. Vac. Sci. Technol. B 13, 1571 (1995).Google Scholar
12 Brandt, C. D., Agarwal, A. K., Augustine, G., Burk, A. A., Clarke, R. C., Glass, R. C., Hobgood, H. M., McHugh, J. P., McMullin, P. G., Siergiej, R. R., Smith, T. J., Sriram, S., Driver, M. C., and Hopkins, R. H., “Compound Semiconductors 1994”, Proc. 21st. Int. Symp. Compound Semiconductors, edited by Goronkin, H. and Mishra, U. (IOP Conf. Series v. 141, IOP Publishing, Bristol, 1995).Google Scholar
13 Sitar, Z., Paisley, M. J., Yan, B., Ruan, J., Choyke, W. J., and Davis, R. F., J. Vac. Sci. Technol. B 8 (2), 316 (1990).Google Scholar
14 Sinharoy, S., Augustine, G., Rowland, L. B., Agarwal, A. K., Messham, R. L., Driver, M. C., and Hopkins, R. H., J. Vac. Sci. Technol. A (in press).Google Scholar
15 Lin, M. E., Sverdlov, B., Zhou, G. L., and Morkoç, H., Appl. Phys. Lett. 62, 3479 (1993).Google Scholar
16 Smith, D. J., Chandrasekhar, D., Sverdlov, B., Botchkarev, A., Salvador, A., and Morkoç, H., Appl. Phys. Lett. 67, 1830 (1995).Google Scholar
17 Weeks, T. W. Jr., Bremser, M. D., Ailey, K. S., Carlson, E., Perry, W. G., and Davis, R. F., Appl. Phys. Lett., 67, 401 (1995).Google Scholar
18 Koide, N., Kato, H., Sassa, M., Yamasaki, S., Manabe, K., Hashimoto, H., Amano, H., Hiramatsu, K., and Akasaki, I., J. Cryst. Growth 115, 639 (1991).Google Scholar
19 Nakamura, S., Mukai, T., and Senoh, M., J. Appl. Phys. 31, 2883 (1992).Google Scholar
20 Wickenden, D. K. and Bryden, W. A., in Silicon Carbide and Related Materials, edited by Spencer, M. G., Devaty, R. P., Edmond, J. A., Khan, M. A., Kaplan, R., and Rahman, M. (Institute of Physics, Bristol), p. 381 (1994).Google Scholar
21 Rowland, L. B., Doverspike, K., and Gaskill, D. K., Appl. Phys. Lett. 66, 1495 (1995).Google Scholar
22 Wickenden, A. E., Rowland, L. B., Doverspike, K., Gaskill, D. K., Freitas, J. A. Jr., Simons, D. S., and Chi, P. H., J. Electron. Mater. 25, 1547 (1995).Google Scholar