Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T02:26:22.996Z Has data issue: false hasContentIssue false

Plasma Synthesis and Surface Passivation of Silicon Quantum Dots with Photoluminescence Quantum Yields higher than 60%

Published online by Cambridge University Press:  01 February 2011

Lorenzo Mangolini
Affiliation:
[email protected], University of Minnesota, Mechanical Engineering, 111 Church St. SE, Minneapolis, MN, 55455, United States
David Jurbergs
Affiliation:
[email protected], Innovalight Inc., Santa Clara, 95054, United States
Elena Rogojina
Affiliation:
[email protected], Innovalight Inc., Santa Clara, 95054, United States
Uwe Kortshagen
Affiliation:
[email protected], University of Minnesota, Mechanical Engineering, 111 Church St. SE, Minneapolis, MN, 55455, United States
Get access

Abstract

Silicon nanocrystals with diameters of less than 5 nm show efficient room temperature pho-toluminescence (PL). Previous reports of PL quantum yields for ensembles of silicon quantum dots have usually been in the few percent range, and generally less than 30%. Here we report the plasma synthesis of silicon quantum dots and their subsequent wet-chemical surface passivation with organic ligands while strictly excluding oxygen. Photoluminescence quantum yields as high as 62% have been achieved at peak wavelengths of about 789 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Brus, L.E., Szajowski, P.J., Wilson, W.L., Harris, T.D., Schuppler, S., and Citrin, P.H., J. Am. Chem. Soc. 117: 29152922 (1995).Google Scholar
2. Furukawa, S. and Miyasato, T., Jpn. J. Appl. Phys. 27(11): L2207 (1988).Google Scholar
3. Cullis, A.G. and Canham, L.T., Nature. 335: 335338 (1991).Google Scholar
4. Delerue, C., Allan, G., and Lannoo, M., Phys. Rev. B. 64(19): 193402 (2001).Google Scholar
5. Hines, M.A. and Guyot-Sionnest, P., Journal of Physical Chemistry. 100(2): 468471 (1996).Google Scholar
6. Norris, D.J., Sacra, A., Murray, C.B., and Bawendi, M.G., Physical review letters. 72(16): 26122615 (1994).Google Scholar
7. Talapin, D.V., Mekis, I., Goetzinger, S., Kornowski, A., Denson, O., and Weller, H., Journal of Physical Chemistry. 108(49): 1882618831 (2004).Google Scholar
8. Mekis, I., Talapin, D.V., Kornowski, A., Haase, M., and Weller, H., Journal of Physical Chemistry B. 107(30): 74547462 (2003).Google Scholar
9. Reiss, P., Bleuse, J., and Pron, A., Nano Letters. 2(7): 781784 (2002).Google Scholar
10. Littau, K.A., Szajowski, P.J., Muller, A.J., Kortan, A.R., and Brus, L.E., J. Phys. Chem. 97: 12241230 (1993).Google Scholar
11. Wilcoxon, J.P., Samara, G.A., and Provencio, P.N., Phys. Rev. B. 60(4): 27042714 (1999).Google Scholar
12. Li, X., He, Y., Talukdar, S.S., and Swihart, M.T., Langmuir. 19(20): 84908496 (2003).Google Scholar
13. Ledoux, G., Gong, J., Huisken, F., Guillois, O., and Reynaud, C., Applied Physics Letters.80(25): 48344836 (2002).Google Scholar
14. Holmes, J.D., Ziegler, K.J., Doty, C., Pell, L.E., Johnston, K.P., and Korgel, B.A., J. Am. Chem. Soc. 123: 37433748 (2001).Google Scholar
15. Sankaran, R.M., Holunga, D., Flagan, R.C., and Giapis, K.P., Nano Letters. 5(3): 531535 (2005).Google Scholar
16. Credo, G.M., Mason, M.D., and Buratto, S.K., Applied Physics Letters. 74(14): 19781980 (1999).Google Scholar
17. Vasiliev, I., Ogut, S., and Chelikowsky, J.R., Physical Review Letters. 86(9): 18131816 (2001).Google Scholar
18. Vasiliev, I., Chelikowsky, J.R., and Martin, R.M., Physical Review B (Condensed Matter and Materials Physics). 65(12): 121302 (2002).Google Scholar
19. Zhou, Z., Brus, L., and Friesner, R., Nano Letters. 3(2): 163167 (2003).Google Scholar
20. Zhou, Z., Friesner, R.A., and Brus, L., Journal of the American Chemical Society. 125: 1559915607 (2003).Google Scholar
21. Puzder, A., Williamson, A.J., Grossman, J.C., and Galli, G., Journal of the American Chemical Society. 125(9): 27862791 (2003).Google Scholar
22. Reboredo, F.A. and Galli, G., Journal of Physical Chemistry B. 109(3): 10721078 (2005).Google Scholar
23. Walters, R.J., Kalkman, J., Polman, A., Atwater, H.A., and Dood, M.J.A. de, Physical Review B. 73(13): 132302 (2006).Google Scholar
24. Wolkin, M.V., Jorne, J., Fauchet, P.M., Allan, G., and Delerue, C., Phys. Rev. Lett. 82(1): 197 (1999).Google Scholar
25. Mangolini, L., Thimsen, E., and Kortshagen, U., Nano Letters. 5(4): 655659 (2005).Google Scholar
26. Buriak, J.M., Chemical Reviews. 102(5): 12711308 (2002).Google Scholar
27. Lie, L.H., Duerdin, M., Tuite, E.M., Houlton, A., and Horrocks, B.R., J. Electroanal. Chem. 538–539: 183190 (2002).Google Scholar
28. Hua, F., Swihart, M.T., and Ruckenstein, E., Langmuir. 21(13): 60546062 (2005).Google Scholar
29. Ledoux, G., Guillois, O., Porterat, D., Reynaud, C., Huisken, F., Kohn, B., and Paillard, V., Physical Review B. 62(23): 15942–51 (2000).Google Scholar