Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T07:25:05.676Z Has data issue: false hasContentIssue false

Plasma Surface Modification in Biomedical Applications

Published online by Cambridge University Press:  15 February 2011

I-H Loh
Affiliation:
Advanced Surface Technology, Inc., 9 Linnell Circle, Billerica, MA 01821, [email protected]
M-S Sheu
Affiliation:
Advanced Surface Technology, Inc., 9 Linnell Circle, Billerica, MA 01821, [email protected]
Get access

Abstract

Synthetic biomaterials are widely used for a variety of in vivo and in vitro biomedical applications. However, the performance, safety, and cost effectiveness of medical products are determined by desirable interactions between the physiological environments and biomaterial surfaces. Hence, development of surface modifications for biomaterials is strongly demanded by the biomedical industry. High energy techniques, such as glow discharge plasma, have been developed to impart specific chemical functionality to the biomaterial surfaces or to deposit new polymer films with desired properties. The use of plasma surface modification for biomedical applications is reviewed in this paper.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hoffman, A.S. in Biomaterials: Interfacial Phenomena and Applications, edited by Cooper, S.L., Peppas, N.A.,Hoffman., A.S. and Ratner., B.D., (Adv. Chem. Ser. No. 199, ACS, Washington 1982), 3.Google Scholar
2. Kato, K., J. Appl. Polym. Sci., 20, 24512460 (1976).Google Scholar
3. Holmes-Farley, S.R. and Whitesides, G.M., Langmuir, 3, 6276 (1987).Google Scholar
4. Briggs, D., Brewis, D.M. and Konieckzo, M.B., Eur. Polym. J., 14, 14 (1978).Google Scholar
5. Prime, K.L. and G.M, Whitesides., Science, 252, 11641167 (1991).Google Scholar
6. Yao, Z.P. and Ranby, B., J. Appl. Polym. Sci., 40, 16471661 (1990).Google Scholar
7. Occhiello, E., Garbassi, F. and Malatesta, V., Die Angew. Makromol. Chemie, 169, 143151 (1989).Google Scholar
8. Loh, I.H., Lu, P.H. and Hirvonen, J.K., Polym. Mat. Sci. Eng., 59, 10281032 (1988).Google Scholar
9. Ishigaki, I., Sugo, T., Senoo, K., Okada, T., Okamoto, J. and Machi, S., J. Appl. Polym. Sci., 27, 10331041 (1982).Google Scholar
10. Avny, Y., Rebenfeld, L. and Weigmann, H.D., J. Appl. Polym. Sci., 22, 125147 (1978).Google Scholar
11. Hudis, M. in Techniques and Applications of Plasma Chemistry, edited by Hollahan, J.R. and Bell, A.T., John Wiley & Sons, New York, 1974, pp. 113147.Google Scholar
12. Hollahan, J.R., Stafford, B.B., Falb, R.D., and Payne, S.T., J. Appl. Polym. Sci., 13, 807816 (1969).Google Scholar
13. H, Yasuda., Plasma Polymerization, Academic Press, Orlando, FL (1985).Google Scholar
14. Simionescu, C.I., Dene's, F., Macoveanu, M.M. and Nequlescu, I., Makromol. Chem., (Suppl.) 8, 1736 (1984).Google Scholar
15. Epaillard, F., Brosse, J.C. and Legeay, G., J. Appl. Polym. Sci., 38, 887898 (1990).Google Scholar
16. Boenig, H.V., Plasma Science and Technology, Cornell University Press, Ithaca, NY (1982).Google Scholar
17. Chapman, B., Glow Discharge Processes, John Wiley & Sons, New York (1980).Google Scholar
18. Sheu, M.S., Hudson, D.M. and Loh, I.H. in Encyclopedic Handbook of Biomaterials and Bioengineering, Part A.Materials, edited by Wise, D.L., Trantolo, D.J., Altobelli, D.E., Yaszemski, M.J., Gresser, J.D. and Schwartz, E.R., Marcer Dekker, New York,, Vol.1 (1995), p.865894.Google Scholar
19. Strobel, M., Lyons, C.S. and Mittal, K.L., eds., Plasma Surface Modification of Polymers: Relevance to Adhesion, VSP, Utrecht, The Netherlands (1994).Google Scholar
19. Yuan, S., Szakalas-Gratzl, G., , G., Ziats, N.P., Joacobsen, D.W., Kottke-Marchant, K. and Marchant, R.E., J. Biomed. Mat. Res., 27, 811– (1993).Google Scholar
20. Yasuda, H.K. and Matsuzawa, Y., J. Appl. Polym. Sci., Appl. Polym. Symp., 38, 6574 (1984).Google Scholar
21. Fowler, B.C., Bohnert, J.L., Horbett, T.A. and Hoffman, A.S., Trans. Third World Biomat. Congress, 11, 99 (1988).Google Scholar
22. Sheu, M.–S., Hoffman, A.S. and Feijen, J., J. Adhesion Sci. & Tech., 6, 9951009 (1992).Google Scholar
23. Terlingen, J.G.A., Feijen, J. and Hoffman, A.S., J. Colloid & Interface Sci., 155, 5565 (1993).Google Scholar
24. Sharma, C.P. and Hari, P.R., J. Biomat. Appl., 5, 4955 (1990).Google Scholar
25. Loh, I.H. and Hudson, D.M., U.S.Patent, no. 5447799 (1995).Google Scholar
26. Ratner, B.D., Chilkoti, A. and Lopez, G.P., Plasma deposition, treatment and etching of polymers, edited by d‘Agostino, R., Academic Press, San Diego, CA (1990), p. 463516.Google Scholar
27. Gombotz, W.R. and Hoffman, A.S., CRC Critical Reviews in Biocompatibility, 4, 142 (1987).Google Scholar
28. Brinen, J.S., Greenhouse, S. and Pinatti, L., Surface and Interf. Anal., 18, 233236 (1991).Google Scholar
29. Sipehia, R., Biomat. Art. Cells & Biotech., 21, 647658 (1993).Google Scholar
30. Latkany, R., Tsuk, A., Sheu, M.S., Loh, I.H. and Trinkaus-Randall, V., J. Biomat. Med. Res., submitted.Google Scholar
31. Lob, I.H., Lin, H.–L. and Chu, C.C., J. Appl. Biomaterials, 3, 131146 (1992).Google Scholar
32. Poncin-Epaillard, F., Legeay, G. and Brosse, J.–C., J. Appl. Polym. Sci., 44, 15131522 (1992).Google Scholar
33. Lai, J.Y., Shih, C.Y. and Tsai, S. M., J. Appl. Polym. Sci., 43, 14311440 (1991).Google Scholar
34. Karakelle, M. and Zdrahala, R.J., J. Memb. Sci., 41, 305313 (1989).Google Scholar
35. Jacobs, P.T. and Lin, S.M., U.S.Patent, no. 4643876 (1987).Google Scholar