Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T08:58:14.936Z Has data issue: false hasContentIssue false

Plasma Enhanced Chemical Vapor Deposition of Porous Organosilicate Glass ILD Films With k ≤ 2.4.

Published online by Cambridge University Press:  01 February 2011

Raymond N. Vrtis
Affiliation:
Air Products and Chemicals, Inc. Allentown PA
Mark L. O'Neill
Affiliation:
Air Products and Chemicals, Inc. Allentown PA
Jean L. Vincent
Affiliation:
Air Products and Chemicals, Inc. Allentown PA
Aaron S. Lukas
Affiliation:
Air Products and Chemicals, Inc. Allentown PA
Brian K. Peterson
Affiliation:
Air Products and Chemicals, Inc. Allentown PA
Mark D. Bitner
Affiliation:
Air Products and Chemicals, Inc. Allentown PA
Eugene J. Karwacki
Affiliation:
Air Products and Chemicals, Inc. Allentown PA
Get access

Abstract

We report on our work to develop a process for depositing nanoporous organosilicate (OSG) films via plasma enhanced chemical vapor deposition (PECVD). This approach entails codepositing an OSG material with a plasma polymerizable hydrocarbon, followed by thermal annealing of the material to remove the porogen, leaving an OSG matrix with nano-sized voids. The dielectric constant of the final film is controlled by varying the ratio of porogen precursor to OSG precursor in the delivery gas. Because of the need to maintain the mechanical strength of the final material, diethoxymethylsilane (DEMS) is utilized as the OSG precursor. Utilizing this route we are able to deposit films with a dielectric constant of 2.55 to 2.20 and hardness of 0.7 to 0.3 GPa, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. O'Neill, M., Lukas, A., Vrtis, R., Vincent, J., Peterson, B., Bitner, M., Karwacki, E., Semicond. Intl. 25, 93 (2002).Google Scholar
2. Wu, G., Gleason, K.K., J. Vac. Sci. A21(2), 388393 (2003).Google Scholar
3. Grill, A., Patel, V. Appl. Phys. Lett. 79(6), 803805 (2001).Google Scholar
4. Uchida, Y., Taguchi, K., Nagai, T., Sugahara, S., Matsumura, M., Japanese J. of Appl. Phys., Part 1: 37(12A), 63696373, (1998).Google Scholar
5. Zhao, B., Wang, S. Q., Anderson, S., lam, R., Fiebig, M., Vasudey, P.K., Sidel, T.E., Materials Research Society Symposium Proceedings (1996), 427(Advanced Metallization for Future ULSI), 415-426.Google Scholar
6. Numata, K., Seha, T.R., Jeng, S.P., Tanaka, T., Materials Research Society Symposium Proceedings (1995), 381, 255–60.Google Scholar
7.2002 International Technology Roadmap for Semiconductos, InterconnectsGoogle Scholar
8. Remenar, J.F., Hawker, C.J., Hedrick, J.L., Kim, S.M., Miller, R.D., Nguyen, C., Trollsas, M., Yoon, D.Y.. Materials Research Society Symposium Proceedings (1998), 511, 6974.Google Scholar
9. Aoi, N.. Japanese J. of Appl. Phys., Part 1: 36(3B), 13551359 (1997).Google Scholar
10. Kohl, A.T., Mimna, R., Shick, R., Rhodes, L., Wang, Z.L., Kohl, P.A.. Electrochemical and Solid-State Letters 2(2), 7779 (1999).Google Scholar
11. Grill, A., Patel, V., Rodbell, K.P., Huang, E., Christiansen, S.. Materials Research Society Symposium Proceedings (2002), 716, 569–74.Google Scholar
12. Lee, J.A., Wetzel, J.T., MacNeil, J., Noakes, A., Bucanan, K., Beekman, K.. Proc. 3rd ICMI 2002 (AVS), Santa Clara USA 2002 pp. 111114.Google Scholar
13. Yasuda, H.. Plasma Polymerization. 1985, Academic Press.Google Scholar