Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-20T02:33:04.033Z Has data issue: false hasContentIssue false

Plasma Chemistry Dependent ECR Etching of GaN

Published online by Cambridge University Press:  21 February 2011

R. J. Shul
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0603
C. I. H. Ashby
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0603
D. J. Rieger
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0603
A. J. Howard
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0603
S. J. Pearton
Affiliation:
University of Florida, Gainesville, FL 32611
C. R. Abernathy
Affiliation:
University of Florida, Gainesville, FL 32611
C. B. Vartuli
Affiliation:
University of Florida, Gainesville, FL 32611
P. A. Barnes
Affiliation:
Auburn University, Auburn, AL 36849
P. Davis
Affiliation:
Auburn University, Auburn, AL 36849
Get access

Abstract

Electron cyclotron resonance (ECR) etching of GaN in Cl2/H2/Ar, Cl2/SF6/Ar, BCl3/H2Ar and BCl3/SF6/Ar plasmas is reported as a function of percent H2 and SF6. GaN etch rates were found to be 2 to 3 times greater in Cl2/H2/Ar discharges than in BCl3/H2/Ar discharges independent of the H2 concentration. In both discharges, the etch rates decreased as the H2 concentration increased above 10%. When SF6 was substituted for H2, the GaN etch rates in BCl3-based plasmas were greater than those for the Cl2-based discharges as the SF6 concentration increased. GaN etch rates were greater in Cl2/H2/Ar discharges as compared to Cl2/SF6/Ar discharges whereas the opposite trend was observed for BCl3,-based discharges. Variations in surface morphology and near-surface stoichiometry due to plasma chemistries were also investigated using atomic force microscopy and Auger spectroscopy, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Nakamura, S., Mukai, T., Senoh, M., and Iwasu, N., Jpn. J. Appl. Phys. 31, L139 (1992).Google Scholar
2 Foresi, J. S. and Moustakas, T. D., Appl. Phys. Lett. 62, 2859 (1993).Google Scholar
3 Nakamura, S., Mukai, T., and Senoh, M., Appl. Phys. Lett., 64, 1687 (1994).Google Scholar
4 Pearton, S. J., Abernathy, C. R., Wisk, P., Hobson, W. S., and Ren, F., Appl. Phys. Lett. 63, 1143 (1993).Google Scholar
5 Binari, S. C., Rowland, L. B., Kruppa, W., Kelner, G., Doverspike, K., and Gaskill, D. K., Electron. Lett. 30, 1248 (1994).Google Scholar
6 Nakamura, S., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys. 30, L1708 (1991).Google Scholar
7 Akasaki, I., Amano, H., Kito, M., and Hiramatsu, K., J. Lumin. 48/49, 666 (1991).Google Scholar
8 Nakamura, S., Senoh, M., and Mukai, T., Appl. Phys. Lett. 62, 2390 (1993).Google Scholar
9 Khan, M. A., Kuznia, J. N., Bhattarai, A. R., and Olson, D. T., Appl. Phys. Lett. 62, 1248 (1993).Google Scholar
10 Adesida, I., Mahajan, A., Andideh, E., Khan, M. A., Olsen, D. T., and Kuznia, J. N., Appl. Phys. Lett. 63, 2777 (1993).Google Scholar
11 Lin, M. E., Fan, Z. F., Ma, Z., Allen, L. H., and Morkoç, H., Appl. Phys. Lett. 64, 887 (1994).Google Scholar
12 Ping, A. T., Adesida, I., Asif Khan, M., and Kuznia, J. N., Electron. Lett. 30, 1895 (1994).Google Scholar
13 Pearton, S. J., Abernathy, C. R., and Ren, F., Appl. Phys. Lett. 64, 2294 (1994).Google Scholar
14 Shul, R. J., Kilcoyne, S. P., Hagerott Crawford, M., Parmeter, J. E., Vartuli, C. B., Abernathy, C. R., and Pearton, S. J., Appl. Phys. Lett, 66, 1761 (1995).Google Scholar
15 Shul, R. J., Howard, A. J., Pearton, S. J., Abernathy, C. R., Vartuli, C. B., Barnes, P. A., and Bozack, M. J., J. Vac. Sci. Technol. B. 13, 2016 (1995).Google Scholar
16 Abernathy, C. R., J. Vac. Sci. Technol. A 11, 869 (1993).Google Scholar