Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T17:44:56.076Z Has data issue: false hasContentIssue false

A Plasma Chemistry and Surface Model for the Deposition of a–Si:H from RF Glow Discharges: A Study of Hydrogen Content

Published online by Cambridge University Press:  28 February 2011

Mark J. Kushner*
Affiliation:
Spectra Technology, Inc.(Formerly Mathematical Sciences Northwest), 2755 Northup Way, Bellevue, WA 98004
Get access

Abstract

An integrated electron kinetics, plasma chemistry, and surface deposition model has been developed to study the relationship between film characteristics and plasma parameters in the plasma enhanced chemical vapor deposition (PECVD) of amorphous hydrogenated silicon (a–Si:H) in low pressure parallel plate RF discharges.The integrated model consists of a Monte-Carlo simulation for the electron distribution function in the RF discharge, a time and spatially dependent plasma chemistry model, and a model for the surface deposition process.The surface model consists of an accounting of the surface density of adsorbed species, and the fractional distribution of various types of bonds (e.g.Si–Si, Si–H, Si–.) in the film.The calculated distribution of radicals in silane discharges will first be discussed.The computed hydrogen content and deposition rates of a-Si:H films from silane and disilane discharges are next discussed and compared to experiment.The dependence of hydrogen content on Rf power and substrate temperature is calculated and agrees well with experiment.Mechanisms are proposed to explain these dependencies.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ross, R.C. and Jaklik, J., Jr., J.Appl.Phys. 55, 3785 (1984), and references thereinCrossRefGoogle Scholar
2. Kampas, F.J., Semiconductors and Semimetals 21A, 153 (1984), and references therein.CrossRefGoogle Scholar
3. Turban, G., Pure and Appl.Chem. 56, 215 (1984)CrossRefGoogle Scholar
4. Tachibana, K., Proc.8th Symp.Ion Sources and Ion-Assisted Tech., Tokyo, 1984, p.319.Google Scholar
5. Kushner, M.J., J.Appl.Phys. 54, 4958 (1983)CrossRefGoogle Scholar
6. Kushner, M.J., Anderson, H.M., and Hargis, P.J., Plasma Synthesis and Etching of Electronic Materials (MRS Symposia Proceedings Vol.38), edited by Chang, R.P.H. and Abeles, B., (Materials Research Society, Pittsburgh, 1985), p.201.Google Scholar
7. Due to space limitations all the reactions (and their rates) used in the model cannot be listed here.A complete listing is available from the author.Google Scholar
8. Scott, B.A., Reimer, J.A., and Longeway, P.A., J.Appl.Phys. 54, 6853 (1983)CrossRefGoogle Scholar
9. Gallagher, A., Plasma Synthesis and Etching of Electronic Materials (MRS Symposia Proceedings Vol.38), edited by Chang, R.P.H. and Abeles, B., (Materials Research Society, Pittsburgh, 1985), p.99.Google Scholar
10. Knights, J.C., Plasma Synthesis and Etching of Electronic Materials (Symposia Proceedings Vol.38), edited by Chang, R.P.H. and Abeles, B., (Materials Research Society, Pittsburgh, 1985), p.371.Google Scholar
11. f is defined as the ratio [H]/[Si], where [H] and [Si] are the densities of hydrogen and silicon atoms in the film.Google Scholar
12. Matsuda, A., Kaga, T., Tanaka, H., Malhortra, L., and Tanaka, K., Jap.J.Appl.Phys. 22, L115 (1983)CrossRefGoogle Scholar
13. Knights, J.C., Lujan, R.A., Rosenblum, M.P., Street, R.A., Bieglesen, D.K., and Reimer, J.A., Appl.Phys.Lett., 38, 331 (1981)CrossRefGoogle Scholar
14. Hamasaki, T., Ueda, M., Chayahara, A., Hirose, M., and Osaka, Y., Appl.Phys.Lett. 44, 600 (1984)CrossRefGoogle Scholar
15. Shirafuji, J., Nagata, S., and Kuwagaki, M., J.Appl.Phys. 58, 3661 (1985)CrossRefGoogle Scholar
16. Shirafuji, J., Kuwagaki, M., Sato, T., and Inuishi, Y., Jap.J.Appl.Phys. 23, 1278 (1984)CrossRefGoogle Scholar
17. Eggarter, E., J.Chem.Phys. 62, 833 (1975)CrossRefGoogle Scholar
18. H.Jacob, J. and Mangano, J.A., Appl.Phys.Lett. 29, 467 (1976)CrossRefGoogle Scholar
19. Rapp, D. and Englander-Colden, P., J.Chem.Phys. 43, 1464 (1965)CrossRefGoogle Scholar
20. Hayashi, M., VI Dry Process Symposium, Tokyo, 1984.307Google Scholar
21. Perrln, J., Schmitt, J.P.M., De Rosny, G., Drevillon, B., Huc, J., and Llorett, A., Chem.Phys. 73, 383 (1982)CrossRefGoogle Scholar
22. Chatham, H., Hils, D., Robertson, R., and Gallagher, A., J.Chem.Phys. 81, 1770 (1984)CrossRefGoogle Scholar
23. Schmitt, J.P.M., Gressier, P., Krishnan, M., DeRosny, G. and Perrin, J., Chem.Phys. 84, 281 (1984)CrossRefGoogle Scholar
24. Garscadden, A., Duke, G.L., and Baily, W.F., Appl.Phys.Lett. 43, 1012 (1983)CrossRefGoogle Scholar
25. Ebinghaus, H., Kraus, K., Muller-Duysing, W. and Neuert, H., A.Naturforschg 19a, 732 (1964)CrossRefGoogle Scholar
26. Srivastava, S.K. and Orient, O.J., 38th Gaseous Electronics Conference, Paper DA-l, Monterrey, Ca., 1985.Google Scholar
27. Kline, L.E., IEEE Trans.Plasma Sci., PS-10, 24 (1982)CrossRefGoogle Scholar
28. Mihelcic, D., Schubert, V., Schindler, R.N. and Potzinger, P., J.Phys.Chem. 81, 1543 (1977)CrossRefGoogle Scholar
29. Coltrin, M.E., Kee, R.J. and Miller, J.A., J.Electrochem.Soc. 131, 425433 (1984)CrossRefGoogle Scholar
30. Haller, I., Appl.Phys.Lett. 37, 282 (1980)CrossRefGoogle Scholar
31. John, P. and Purnell, J., J.Chem.Soc.Faraday.Trans. 1 69, 1455–61 (1973)CrossRefGoogle Scholar
32. Rieman, B., Matthew, A., Lampert, R. and Potzinger, P., Ber.Bunsenges.Phys.Chem. 81, 500 (1977)CrossRefGoogle Scholar
33. Perkins, G.G.A., Austin, E.R., and Lampe, F.W., J.Am.Chem.Soc. 101, 1109 (1979)CrossRefGoogle Scholar
34. Yachibana, K., Nishida, M., Harima, H. and Urano, Y., J.Phys.D. 17, 1727 (1984)CrossRefGoogle Scholar
35. Chatham, H. and Gallagher, A., J.Appl.Phys. 58, 159169 (1985)CrossRefGoogle Scholar
36. Henis, J.M.S., Stewart, G.W. and Gaspar, P.P., J.Chem.Phys. 58, 3639 (1973)CrossRefGoogle Scholar
37. Henis, J.M., Stewart, G.W., Tripodi, M.K. and Gaspar, P.P., J.Chem.Phys. 57, 389 (1972)CrossRefGoogle Scholar
38. Yu, T-Y., Cheng, T.M.H., Kenpter, V. and Lampe, F.W., J.Phys.Chem. 76, 33213330 (1972)CrossRefGoogle Scholar
39. Piper, L.G., Velazco, J.E. and Setser, D.W., J.Chem.Phys. 59, 3323 (1973)CrossRefGoogle Scholar
40. Balamuta, J., Golde, M.F. and Ho, Y-S., J.Chem.Phys. 79, 2822 (1983)CrossRefGoogle Scholar
41. Cottrel, T.L., and Matheson, A.J., Trans.Faraday Soc. 58, 2336 (1963)CrossRefGoogle Scholar
42. Moore, C.B., J.Chem.Phys. 43, 2979 (1965)CrossRefGoogle Scholar
43. Yardley, J.T., Fertig, M.N. and Moore, C.B., J.Chem.Phys. 52, 1450(1970)CrossRefGoogle Scholar
44. Yardley, J.T. and Moore, C.B., J.Chem.Phys. 45, 106 (1960)Google Scholar