Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:53:59.562Z Has data issue: false hasContentIssue false

Pip Processing, Microstructure and Properties of Si34N Fiber and Al2O3 Fiber Reinforced Silicon Nitride

Published online by Cambridge University Press:  15 February 2011

Stuart T. Schwab
Affiliation:
Southwest Research Institute, San Antonio, Texas 78238-5166
Richard A. Page
Affiliation:
Southwest Research Institute, San Antonio, Texas 78238-5166
David L. Davidson
Affiliation:
Southwest Research Institute, San Antonio, Texas 78238-5166
Renee C. Graef
Affiliation:
Southwest Research Institute, San Antonio, Texas 78238-5166
Get access

Abstract

Polymer infiltration/pyrolysis (PIP) processing has the potential to become an affordable means of manufacturing continuous fiber-reinforced ceramic-matrix components. The PIP method is very similar to the well-known polymer-matrix and carbon-carbon composite manufacturing techniques, the major difference being the use of a preceramic polymer in place of the organic polymer or carbon precursor. To date, the majority of research in the field of preceramic polymers has centered on precursors to silicon carbide (SiC). The Southwest Research Institute (SwRI) has focused on the development of polymeric precursors to silicon nitride (Si3N4) because its high-temperature strength, resistance to oxidation, and other properties make it an attractive candidate for many advanced high-temperature structural applications. PIP Si3N4 composites with NICALON SiC fiber reinforcement have exhibited good fracture toughness (KIC ∼ 16MPa·m1/ 2). We report here processing, microstructure and preliminary mechanical properties of two new PIP Si3N4 composites. One is reinforced with Tonen Si3N4 fiber (plain weave) while the other is reinforced with ALMAX Al2O3 fiber (8 Harness satin weave).

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Morley, J.G., High-Performance Fibre Composites, Academic Press: New York, 1987.Google Scholar
2. Strife, J.R., Brennan, J.J., and Prevo, K.M., Ceram. Eng. Sci. Proc., 1990, 11, pp. 871919.Google Scholar
3a) Veltri, R.D. and Galasso, F.S., J. Am. Cer. Soc., 1990, 73, pp. 21372140; b) J.T. Hoyt and J.M. Yang, Sampe Journal, 1991, 27, pp. 11-17.Google Scholar
4 Luthra, K.L., Singh, R.J., and Brun, M.K., Cer. Bull., 1993, 72 (7), (July 1993), pp. 7985.Google Scholar
5a) Ziegler, G., Heinrich, J., Wötting, G., J. Mater. Sci., 1987, 22, pp. 30413086; b) C. Boberski, R. Hamminger, M. Peuckert, F. Aldinger, R. Dillinger, J. Heinrich, J. Huber, Angew. Chem. Int. Ed. Engl. Adv. Mater., 1989,28, pp. 1560-1569.Google Scholar
6. Kodama, H., Sakamoto, H., and Miyoshi, T., J. Am. Cer. Soc., 1989, 72, pp. 551558.Google Scholar
7. Yang, J.-M., Chen, S.T.J., Jeng, S.M., Thayer, R.B., and LeCoustaouec, J.-F., J. Mater. Res., 1991, 6, pp. 19261936.Google Scholar
8. a) Bhatt, R.T., Phillips, R.E., J. Mater, Sci., 1990, 25, pp. 34013407; b) R.T. Bhatt, J. Am. Cer. Soc., 1992, 75, pp. 406-412; c) J.W. Holmes, T. Kotil, and W.T. Foulds, “High Temperature Fatigue of SiC Fiber-Reinforced Si3N4Ceramic Composites,” in Proceedings of the ASC Symposium on High Temperature Composites (Dayton, June 1989); d) G.B. Freeman, R.L. Starr, J.N. Harris, R.E. Kirchain, and D.L. Mohr, “Characterization of the Fiber-Matrix Interfaces in a SiC-Si3N4Cearmic Composite System,” Heat-Resistant Materials, Proceedings of the First International Conference (Fontana, WI, September 1991).Google Scholar
9. a) Sato, K., Suzuki, T., Funayama, O., and Isoda, T., J. Cer. Soc. Japan, 1992, 100, pp. 444447; b) K. Sato, T. Suzuki, O. Funayama, T. Isoda, and T. Itoh, Ceram. Eng. Sci. Proc., 1992, 13, pp. 614-621.Google Scholar
10. a) Schwab, S.T., Graef, R.C., Davidson, D.L., Pan, Y.-M., Polymer Preprints, 1991, 32 (Aug), pp. 556558; b) S.T. Schwab and C.R. Blanchard-Ardid, Mat. Res. Soc. Symp. Proc., 1988, 121, pp. 581-587; c) S.T. Schwab, C.R. Blanchard, and R.C. Graef, J. Mater. Sci., 1994, 29, pp. 6320-6328.Google Scholar
11. a) Schwab, S.T. and Graef, R.C., “Repair of Oxidation Protection Coatings on Carbon-Carbon Using Preceramic Polymers,” NASA-CP 3133, 1991, Part 2, pp. 781798; b) S.T. Schwab, R.C. Graef, Y.-M. Pan, D.M. Curry, V.T. Pham, J.D. Milhoan, and D.J. Tillian, “Arc-jet Testing of Damaged RCC-3 Repaired Using Preceramic Polymers,” NASA-CP 3235, 1994, Part 2, pp. 515-540.Google Scholar
12. a)Schwab, S.T., Graef, R.C., Pan, Y.M., and Davidson, D.L., “Infiltration/Pyrolysis Processing of SiC Fiber-Reinforced Si3N4Composites,” NASA-CP 3175, 1992, Part 2, pp. 721738; b) S.T. Schwab, D.L. Davidson, Y.-M. Pan, C.R. Blanchard, R.C. Graef, S.F. Dec, M.F. Davis, and G.E. Maciel, “Processing and Properties of Polymer-Derived Si3N4Composites,” NASA-CP 3235, 1994, Part 2, pp. 801-822.Google Scholar
13. a) Shriver, D.F., Drezdzon, M.A., The Manipulation of Air-Sensitive Compounds, 2nd Edition, John Wiley: New York, 1986; b) A.L. Wayda, M.Y. Darensbourg, Experimental Organometallic Chemistry, ACS Symposium Series 357; American Chemical Society: Washington, DC, 1987.Google Scholar
14. Schwab, S.T., “Polysilazane Precursors for Silicon Nitride and Resultant Products” U.S. Patent No. 5,294,425 (15 March 1994).Google Scholar
15. Blanchard, C.R. and Schwab, S.T., J. Am. Cer. Soc., 1994, 77, pp. 17291739.Google Scholar
16. Prof. Sneddon, Larry G., Department of Chemistry, University of Pennsylvania, personal communication to S.T. Schwab (21 November 1994).Google Scholar