Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T20:51:02.985Z Has data issue: false hasContentIssue false

Pinning Action of a Thin Ga Interfacial Layer in an Sb/Ga/GaAs Schottky Barrier Structure Grown by MBE

Published online by Cambridge University Press:  26 February 2011

X.-J. Zhang
Affiliation:
Fudan University, Shanghai, China
H. Cheng
Affiliation:
Carnegie-Mellon University, Pittsburgh, PA 15213
A. G. Milnes
Affiliation:
Carnegie-Mellon University, Pittsburgh, PA 15213
Get access

Abstract

The pinning action on the barrier height of a Ga interfacial layer in an Sb/Ga/GaAs structure prepared by molecular beam epitaxy has been tracked as a function of Ga layer thicknesses for both n and p-GaAs (100). The barrier height ÆBn for n-type GaAs (ND=3×1015cm−3), determined by thermal activation measurements and capacitance measurements, changes from 0.8 to 1.0 eV as the Ga layer is increased from zero to three monolayers. The barrier height ÆBp for p-type GaAs decreases in a converse fashion so that the sum ÆBn + ÆBp is equal to the GaAs energy gap. Up to a Ga layer thickness of about one monolayer the barrier height changes are about linearly proportional to thickness.

The action seen is compatible with barrier height changes that are seen when Sb/GaAs junctions are prepared with the original surface alternatively As or Ga rich and subjected to thermal annealing at temperatures up to 250°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Spicer, W. E., Chye, P. W., Skeath, P. R., Su, C. Y., and Lindau, I., J. Vac. Sci. Technol., 16, 1422 (1979).Google Scholar
2. Spicer, W. E., Eglash, S. J., Keath, P. S., Mahowald, P., Lindau, I., Pan, S., Mo, D., and Collins, D. M., 2nd Int. Symp. on Molecular Beam Epitaxy CST-2 1982, Tokyo, p. 269 Japan. Soc. of Appl. Phys.Google Scholar
3. Brillson, L. J. and Brucker, C. F., J. Vac. Sci. Technol., 19, 661 (1981), Also L. J. Brillson, Applies. Surface Sci., 11/12, 249 (1982) and L. J. Brillson, Thin Solid Films, 89, 461 (1982).CrossRefGoogle Scholar
4. Zur, A., McGill, T. C. and Smith, D. L., Phys. Rev., B28, 2060 (1983).Google Scholar
5. Chiaradia, P., Katnani, A. D., Sang, H. W. Jr., and Bauer, R. S., Phys. Rev. Lett., 52, 1246 (1984).Google Scholar
6. Massies, J., Dezaly, F., and Linh, T., J. Vac. Sci. Technol., 17, 1134 (1980).CrossRefGoogle Scholar
7. Brucher, C. F. and Brillson, L. J., Appl. Phys. Lett., 39, 67 (1981).CrossRefGoogle Scholar
8. Wang, W. I., J. Vac. Sci. Technol., 81, 574 (1983).CrossRefGoogle Scholar
9. Freeouf, J. L. and Woodall, J. M., Appl. Phys. Lett., 39, 727 (1981).10.1063/1.92863Google Scholar
10. Cheng, H., Zhang, X-J. and Milnes, A. G., Solid State Electronics, 27 (1984) to be published.Google Scholar
11. Bachrach, R. Z. and Bauer, R. S., J. Vac. Sci. Technol., 16, 1149 (1979).CrossRefGoogle Scholar
12. Woodall, J. M., Lanza, C., and Freeouf, J., J. Vac. Sci. Technol., 15, 1436 (1978).CrossRefGoogle Scholar
13. Svensson, S. P., Kanski, J., and Andersson, T. G., Phys. Rev. B30(10), 6033 (1984).CrossRefGoogle Scholar
14. Skeath, P. R., Lindau, I., Su, C. Y., Chye, P. W., and Spicer, W. E., J. Vac. Sci. Technol., 17, 511 (1980).Google Scholar
15. Spicer, W. E., Pan, S., Mo, D., Newman, N., Makowald, D., Kendelewicz, T., and Eglash, S., J. Vac. Sci. Technol. B2(3), 476 (1984).CrossRefGoogle Scholar
16. Skeath, P., Lindau, I., Su, C. Y., and Spicer, W. E., Phys. Rev. B28(12), 7051 (1983).Google Scholar
17. Svensson, S. P. and Andersson, T. G., Proc. 3rd Int. Conf. on Molecular Beam Epitaxy, San Francisco August (1984).Google Scholar
18. Cowley, A. M. and Sze, S. M., J. Appl. Phys., 36, 3212 (1965).Google Scholar
19. Sze, S. M., Physics of Semiconductor Devices, Wiley-Interscience 2nd Ed., p. 270 et seq.Google Scholar
20. Tyagi, M. S., Surface Science, 64, 323 (1977).Google Scholar
21. Seiranyan, G. B. and Tkhorik, Y. A., Phys. Status Solidi, A13, K115 (1972).Google Scholar
22. Waldrop, J. R., J. Vac. Sci. Technol. B2(3), 445 (1984).Google Scholar