Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T08:05:21.945Z Has data issue: false hasContentIssue false

Pile-Up Based Hall-Petch Considerations at Ultra-Fine Grain Sizes

Published online by Cambridge University Press:  15 February 2011

T. R. Smith
Affiliation:
Materials and Nuclear Engineering Department
R. W. Armstrong
Affiliation:
Department of Mechanical Engineering, University of Maryland, College Park, MD 20742
P. M. Hazzledinew
Affiliation:
UES Inc., 4401 Dayton-Xenia Road, Dayton OH 45432
R. A. Masumura
Affiliation:
Naval Research Laboratory, Washington DC 20375-5343
C. S. Pande
Affiliation:
Naval Research Laboratory, Washington DC 20375-5343
Get access

Abstract

The dislocation pile-up explanation for the Hall-Petch (H-P) relation is re-examined for ultrafine grain sizes when only a few dislocations are involved in the pile-up, formed necessarily at applied stress levels near to the theoretical limit. Each dislocation added to the pile-up produces a step reduction in the H-P stress. Consequently, differences in dislocation configurations and types of pile-ups are easily recognized in the limit of small dislocation numbers. A significant reduction occurs in the H-P slope value (i.e., microstructural stress intensity) for the extreme case of only one dislocation loop being expanded against the grain boundary obstacle stress.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Eshelby, J. D., Frank, F. C. and Nabarro, F. R. N., Phil. Mag., 42, 351 (1951).Google Scholar
2. Hall, E. O., Proc. Phys. Soc. London B, 64, 747 (1951).Google Scholar
3. Petch, N.J., J. Iron Steel Inst., 174, 25 (1953).Google Scholar
4. Baker, T. N., ed., Yield, Flow and Fracture of Polycrystals, Applied Science Publ., London (1984).Google Scholar
5. Armstrong, R. W., Codd, I, Douthwaite, R. M. and Petch, N. J., Phil. Mag. 7, 45 (1962).Google Scholar
6. Armstrong, R. W., in Ultra-Fine-Grain Metals, Syracuse University Press, Syracuse, NY 1970), p. 1.Google Scholar
7. Armstrong, R. W. in [4], p.1.Google Scholar
8. Hayashi, K. and Etoh, H., Materials Trans., Japan Inst. Met., 30, 925 (1989).Google Scholar
9. Jang, J. S. C. and Koch, C. C., Scripta Met., 24, 1599 (1990).Google Scholar
10. Embury, J. D. and Fisher, R. M., Acta Met., 14, 147 (1966).Google Scholar
11. Armstrong, R. W., Chou, Y. T., Fisher, R. M. and Louat, N., Phil. Mag., 14, 943 (1966).Google Scholar
12. Li, J. C. M. and Liu, G. C. T., Phil. Mag., 15, 1059 (1967).Google Scholar
13. Pande, C. S., Masumura, R. A. and Armstrong, R. W., NanoStuctured Materials, 2,323 (1993).Google Scholar
14. Cottrell, A. H., in Dislocations and Plastic Flow in Crystals, Oxford Univ. Press, Oxford (1953), p. 105.Google Scholar
15. Marcinkowski, M. J. and Armstrong, R. W., J. Appl. Phys., 43, 2548 (1972).Google Scholar
16. Liu, H. W. and Gao, Q., Theor. Appl. Fract. Mech., 12, 195(1990).Google Scholar
17. Eshelby, J. D., Phys. Stat. Sol., 3, 2057 (1963).Google Scholar