Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T19:27:39.609Z Has data issue: false hasContentIssue false

Photoreflectance Characterisation of Reactive Ion Etched Silicon

Published online by Cambridge University Press:  22 February 2011

M. Murtagh
Affiliation:
National Microelectronics Research Centre, Lee Maltings, Prospect Row, Cork, Ireland
J. T. Beechinor
Affiliation:
National Microelectronics Research Centre, Lee Maltings, Prospect Row, Cork, Ireland
P. A. F. Herbert
Affiliation:
National Microelectronics Research Centre, Lee Maltings, Prospect Row, Cork, Ireland
P.V. Kelly
Affiliation:
National Microelectronics Research Centre, Lee Maltings, Prospect Row, Cork, Ireland
G. M. Crean
Affiliation:
National Microelectronics Research Centre, Lee Maltings, Prospect Row, Cork, Ireland
C. Jeynes
Affiliation:
Dept. of Electronic Engineering, University of Surrey, Guildford GU2 5XH, England
Get access

Abstract

Reactive ion etching (RIE) of p-type 2-3 †cm resistivity silicon (100) was characterised using Photoreflectance (PR), Rutherford Backscattering Spectrometry (RBS) and Spectroscopic Ellipsometry (SE). Isochronal (5 minutes) etching was performed at various DC etch biases (0-500V) using a SiCl4 etch chemistry. The substrate etch rate dependence on applied bias was determined using mechanical profilometry. A distinct shift in the A3–A1 Si transition and significant spectral broadening of the room temperature PR spectra was observed as a function of etch bias. Photoreflectance results are correlated with RBS, SE and etch rate analysis. It is demonstrated that the PR spectra reflect a complex, competitive, plasma-surface interaction during the RIE process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Crean, G. M., Little, I. and P. Herbert, A. F., Appl. Phys. Lett., Vol. 58, 4, 1991).CrossRefGoogle Scholar
[2] Murtagh, M., Crean, G.M., Flaherty, T. and Jeynes, C., Appl. Surf. Sci., 54, 1992).Google Scholar
[3] Shen, W., Fantini, M. C., Pollak, F. H., Tomkiewicz, M., Leary, H. J. and Gambino, J. P., J. Appl. Phys. 66 (4), 1785 1989).Google Scholar
[4] Murtagh, M., Kelly, P.V., Herbert, P.A.F., O'Connor, M., Duffy, G. and Crean, G. M., Appl. Surf. Sci, 63, 1993).Google Scholar
[5] Pollak, F. H. and Rubloff, G. W., Phys. Rev. Lett. 29, 789 (1972).CrossRefGoogle Scholar
[6] Aspnes, D. E., Surf. Sci. 37, 418 (1973).CrossRefGoogle Scholar
[7] Tadokoro, T., Koyama, F. and Iga, K., J. Vac. Sci. Technol. B7, 5, 1989).Google Scholar
[8] Berry, A. K., Gaskill, D. K., Stauf, G. T. and Bottka, N., Appl. Phys. Lett. 58 (24), 1991).Google Scholar
[9] Harris, C., Sawyer, W. D., Konuma, M. and Weber, J., E-MRS Conf., Strasbourg, Paper No. B-XII.3, 1989).Google Scholar
[10] Herman, F., “The Electronic Energy Band Structure of Silicon and Germanium”, Proc. IRE, 43, 1703, 1955).Google Scholar
[11] Lynch, S., Murtagh, M., Crean, G. M., Kelly, P., O'Connor, M. and Jeynes, C., Thin Solid Films, 233, 1993).Google Scholar