Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:10:23.388Z Has data issue: false hasContentIssue false

Photo-Oxidation of Silicon: Reaction Mechanisms and Film Structure

Published online by Cambridge University Press:  22 February 2011

Ian W. Boyd*
Affiliation:
Electronic & Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, UK.
Get access

Abstract

The use of intense photon beams to initiate silicon oxidation is reviewed. In particular, recent experiments involving visible photons are discussed, which confirm a thermal domination and a clear photon enhancement. With equal powers of 488 and 514 nm radiation, the latter initiates faster reaction rates. Structural studies of the films are also reported using IR spectrometry, where we find broad similarities and intriguing differences the between laser and furnace grown films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Micheli, F., Boyd, I.W., Optics & Laser Technology, 18, 313 (1986); 19, 19 (1987); 19, 75 (1987).CrossRefGoogle Scholar
2. Boyd, I.W., Laser Processing of Thin Films and Microstructures, Springer Series in Materials Science Vol.3, Springer-Verlag, London, New York, 1987.Google Scholar
3. Lewis, E.A., Irene, E.A., J. Vac. Sci. Technol., A4, 916 (1986).Google Scholar
4. Rochet, F., Rigo, S., Froment, M., D'Anterroches, C., Maillot, C., Roulet, H., Dufour, G., Advances in Physics, 35, 237 (1987).CrossRefGoogle Scholar
5. Deal, B.E., Grove, A.S., J. Appl. Phys, 36, 3770 (1965).Google Scholar
6. Siejka, J., Perriere, J., Srinivasan, R., Appl.Phys.Lett., 46,773 (1985).Google Scholar
7. Bertness, K.A., Petro, W.G., Silberman, J.A., Friedman, D.J., Spicer, W.E., J. Vac. Sci. Technol., A3, 1464 (1985).Google Scholar
8. Petro, W.G., Hino, I., Eglash, S., Lindau, I., Su, C.Y., Spicer, W.E., J. Vac. Sci. Technol., 21, 405 (1982).Google Scholar
9. Bermudez, V.M., J. Appl. Phys., 54, 6795 (1983).Google Scholar
10. Fukuda, M., Takahei, K., J. Appl. Phys., 57, 129 (1985).Google Scholar
11. Fathipour, M., Boyer, P.K., Collins, G.J., Wilmsen, C.W., J. Appl. Phys., 57, 637 (1985).Google Scholar
12. Blum, S.E., Brown, K., Srinivasan, R., Appl.Phys.Lett., 43, 1026 (1983).CrossRefGoogle Scholar
13. Wautelet, M., Baufay, L., Thin Solid Films, 100, L9 (1983).Google Scholar
14. Sugi, T., Ho, T., Ishikawa, H., Appl. Phys. Lett., 45, 966 (1984).CrossRefGoogle Scholar
15. Chuang, T.J., Hussla, I., Sesselman, W., in Laser Processing and Diagnostics, ed., Bäuerle, D., Springer-Verlag, Berlin, 1984.Google Scholar
16. Yu, C.F., Schmidt, M.T., Podlesnik, D.V., Osgood, R.M., J. Vac. Sci. Technol., 85, 1087 (1987).Google Scholar
17. Ashby, C.I.H., Appl. Phys. Lett., 43, 609 (1983).Google Scholar
18. Gibbons, J.F., Japan. J. Appl. Phys. Suppl., 19, 121 (1981).Google Scholar
19. Boyd, I.W., Wilson, J.I.B., West, J., Thin Solid Films, 83, L173 (1981).Google Scholar
20. Boyd, I.W., Appl. Phys. Lett., 42, 728 (1983).Google Scholar
21. Schafer, S.A., Lyon, S.A., J Vac Sci & Technol, 21, 423 (1982).Google Scholar
22. Young, E.M., Tiller, W.A., J.Appl.Phys., 62, 2086 (1987).Google Scholar
23. Young, E.M., Tiller, W.A., Appl.Phys.Lett.,50,46 (1987) & refs therein.Google Scholar
24. Boyd, I.W., Moss, S.C., in Laser Chemical Processing of Semiconductor Devices, eds., Houle, F.A., Deutsch, T.F., Osgood, R.M., Extended Abstracts of MRS Symposium B, Boston, MRS Pittsburgh, 1984.Google Scholar
25. Boyd, I.W., in Dielectric Layers in Semiconductors, Bentini, G.G., Fogarassy, E., Golanski, A., Les Editions de Physique, Les Ulis, 1986.Google Scholar
26. Boyd, I.W., Micheli, F., Electron. Lett., 23, 298 (1987).CrossRefGoogle Scholar
27. Micheli, F., Boyd, I.W., Appl. Phys. Lett., 51, 1149 (1987).CrossRefGoogle Scholar
28. Jellison, G.E., in Pulsed Laser Processing of Semiconductors Vol.23 of Semiconductors and Semimetals, eds., Wood, R.F., White, C.W., Young, R.T., Academic, New York, 1984.Google Scholar
29. Pliskin, W.A., Esch, R.P., Appl. Phys. Lett., 11, 257 (1967).CrossRefGoogle Scholar
30. Boyd, I.W., Wilson, J.I.B., J. Appl. Phys., 53, 4172 (1982).Google Scholar
31. Boyd, I.W., Wilson, J.I.B., J. Appl. Phys, (1987).Google Scholar
32. Grunthaner, F.J., Grunthaner, P.J., Mater. Sci. Rep., 1, 65 (1986).Google Scholar
33. Shimura, F., Tsuya, H., Kawamura, T., Appl. Phys. Lett., 37, 483 (1980).Google Scholar
34. Boyd, I.W., Wilson, J.I.B., Appl. Phys. Lett., 50, 320 (1987).Google Scholar
35. Nakamura, M., Mochizuki, Y., Usami, K., Itoh, Y., Nozaki, T., J. Electrochem. Soc., 132, 482 (1985).Google Scholar
36. Hensel, E., Wollschlager, K., Schulze, D., Kreissig, U., Skorupa, W., Finster, J., Surface and Interface Analysis, 7, 207 (1985).Google Scholar
37. Fargeix, A., Ghibaudo, G., J. Appl. Phys., 54, 7153 (1983).Google Scholar
38. Doremus, R.H., Thin Solid Films, 122, 191 (1984).Google Scholar
39. Bell, R.J., Bird, N.F., Dean, P., J. Phys. C, 1, 299 (1968).Google Scholar
40. Ordway, F., Science, 143, 800 (1964).Google Scholar
41. Gaskell, P.H., Johnson, D.W., J. Non Crys. Solids, 20, 171 (1976).CrossRefGoogle Scholar
42. Revesz, A.G., Walrafen, G.E., J. Non Cryst. Solids, 54, 323 (1983).Google Scholar
43. Phillips, J.C., Solid State Physics, 37, 93 (1982).Google Scholar
44. Bando, Y., Ishizuka, K., J. Non Cryst. Solids, 33, 375 (1979).Google Scholar
45. Goodman, C., Phys. Chem. Glasses, 27, 29 (1986).Google Scholar
46. Boyd, I.W., Appl. Phys. Lett., 51, 418 (1987).CrossRefGoogle Scholar