Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:40:05.325Z Has data issue: false hasContentIssue false

Photon Management for Near-Total Solar Absorption in Hematite Photoanodes

Published online by Cambridge University Press:  01 May 2014

Ken Xingze Wang
Affiliation:
Stanford University, Stanford, CA 94305, U.S.A.
Zongfu Yu
Affiliation:
Stanford University, Stanford, CA 94305, U.S.A.
Victor Liu
Affiliation:
Stanford University, Stanford, CA 94305, U.S.A.
Mark L. Brongersma
Affiliation:
Stanford University, Stanford, CA 94305, U.S.A.
Thomas F. Jaramillo
Affiliation:
Stanford University, Stanford, CA 94305, U.S.A.
Shanhui Fan
Affiliation:
Stanford University, Stanford, CA 94305, U.S.A.
Get access

Abstract

Using first-principles full-field electromagnetic simulations, we demonstrate that near-perfect above-band-gap solar absorption can be achieved in nanostructured, ultra-thin-film iron oxide photoanodes for photoelectrochemical (PEC) water splitting. In our designed core-shell nanocone structures, all regions of hematite (α-iron oxide) are away from the interface between hematite and water by a minimum distance of less than the hole diffusion length in hematite, which is assumed to be no greater than 20nm. The optical absorption in our structure corresponds to a photocurrent density of 12.5mA/cm2 if one assumes an air mass 1.5 solar spectrum and a unity absorbed photon-to-current efficiency (APCE) for all wavelengths in that spectrum. Our photon management strategy eliminates the trade-off between optical absorption and carrier collection as commonly found in conventional designs of PEC cells, and variants of the strategy are generally applicable to other material systems.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

van de Krol, R and Grätzel, M., Photoelectrochemical Hydrogen Production (Springer, Berlin, 2012).10.1007/978-1-4614-1380-6CrossRefGoogle Scholar
Sivula, K., Formal, F.L., and Grätzel, M., Chem. Sus. Chem. 4, 432449 (2011).10.1002/cssc.201000416CrossRefGoogle Scholar
Kennedy, J.H. and Frese, K.W., J. Electrochem. Soc. 125, 709 (1978).10.1149/1.2131532CrossRefGoogle Scholar
Dare-Edwards, M.P., Goodenough, J.B., Hamnett, A., and Trevellick, P.R., J. Chem. Soc., Faraday Trans. 1(79), 2027 (1983).10.1039/f19837902027CrossRefGoogle Scholar
Itoch, K. and Bockris, J.O., J. Electrochem. Soc. 131, 12661271 (1984).10.1149/1.2115798CrossRefGoogle Scholar
Khaselev, O. and Turner, J.A., Science 280, 425 (1998).10.1126/science.280.5362.425CrossRefGoogle Scholar
Brillet, J., Yum, J.-H., Cornuz, M., Hisatomi, T., Solarska, R., Augustynski, J., Grätzel, M., and Sivula, K., Nat. Photonics 6, 824 (2012).10.1038/nphoton.2012.265CrossRefGoogle Scholar
Bjorksten, U., Moser, J., and Grätzel, M., Chem. Mater. 6, 858863 (1994).10.1021/cm00042a026CrossRefGoogle Scholar
Kay, A., Cesar, I., and Grätzel, M., J. Am. Chem. Soc. 128, 1571415721 (2006).10.1021/ja064380lCrossRefGoogle Scholar
Brillet, J., Grätzel, M., and Sivula, K., Nano Lett. 10, 41554160 (2010).10.1021/nl102708cCrossRefGoogle Scholar
Boettcher, S.W., Warren, E.I., Putnam, M.C., Santori, E.A., Turner-Evans, D., Kelzenberg, M.D., Walter, M.G., McKone, J.R., Brunschiwig, B.S., Atwater, H.A., and Lewis, N.S., J. Am. Chem. Soc. 133, 12161219 (2011).10.1021/ja108801mCrossRefGoogle Scholar
Dasgupta, N.P. and Yang, P., Front. Phys. 20950462, 114 (2013).Google Scholar
Kim, J.Y., Magesh, G., Youn, D.H., Jang, J.-W., Kubota, J., Domen, K., and Lee, J.S., Sci. Rep. 3, 2681 (2013).10.1038/srep02681CrossRefGoogle Scholar
Schuller, J.A., Barnard, E.S., Cai, W., Jun, Y.C., White, J.S., and Brongersma, M.L., Nat. Mater. 9, 193 (2010).10.1038/nmat2630CrossRefGoogle Scholar
Warren, S.C. and Thimsen, E., Energy Environ. Sci. 5, 51335146 (2012).Google Scholar
Lee, J., Mubeen, S., Ji, X., Stucky, G.D., and Moskovits, M., Nano Lett. 12, 50145019 (2012).10.1021/nl302796fCrossRefGoogle Scholar
Chen, Z., Jaramillo, T.F., Deutsch, T.G., Kleiman-Schwarsctein, A., Forman, A.J., Gaillard, N., Garland, R., Takanabe, K., Heske, C., Sunkara, M., McFarland, E.W., Domen, K., Miller, E.L., Turner, J.A., and Dinh, H.N., J. Mater. Res. 25, 316 (2010).10.1557/JMR.2010.0020CrossRefGoogle Scholar
Ernst, K., Belaidi, A., and Konenkamp, R., Semicond. Sci. Technol. 18, 475479 (2003).10.1088/0268-1242/18/6/314CrossRefGoogle Scholar
Hwang, Y.J., Wu, C.H., Hahn, C., Jeong, H.E., and Yang, P., Nano Lett. 12, 16781682 (2012).10.1021/nl3001138CrossRefGoogle Scholar
Dotan, H., Kfir, O., Sharlin, E., Blank, O., Gross, M., Dumchin, I., Ankonina, G., and Rothschild, A., Nature Materials 12, 158 (2013).10.1038/nmat3477CrossRefGoogle Scholar
Sivula, K., Formal, F.L., and Grätzel, M., Chem. Mater. 21, 28622867 (2009).10.1021/cm900565aCrossRefGoogle Scholar
Wang, K.X., Yu, Z., Liu, V., Brongersma, M.L., Jaramillo, T.F., and Fan, S., ACS Photonics 1, 235240 (2014).10.1021/ph4001026CrossRefGoogle Scholar
Klahr, B.M., Martinson, A.B.F., and Hamann, T.W., Langmuir 27, 461468 (2011).10.1021/la103541nCrossRefGoogle Scholar
Liu, V. and Fan, S., Computer Physics Communications 183, 22332244 (2012).10.1016/j.cpc.2012.04.026CrossRefGoogle Scholar
Palik, E.D., Handbook of Optical Constants of Solids (Academic Press, 1985).Google Scholar
Collaboration: Authors and editors of the volumes III/17G-41D: Hematite (alpha-Fe2O3): optical properties, dielectric constants. Madelung, O., Rossler, U., Schulz, M. (ed.). SpringerMaterials - The Landolt-Bornstein Database (http://www.springermaterials.com). DOI: 10.1007/10681735\_552 10.1007/10681735CrossRefGoogle Scholar