No CrossRef data available.
Published online by Cambridge University Press: 28 February 2011
Single crystal-silicon quantum well layers with SiO2 barriers were grown from silicon-on-insulator substrates. Photoluminescence in the red and near-infrared was observed for average layer thickness < 8 nm, with peak signal for 2-nm thickness. The luminescence spectrum was essentially independent of well width for SiO2 barriers, but the photoluminescence intensity decreased sharply after annealing in Ar. These results suggest the importance of radiation from surface states. In contrast to oxide-passivated silicon nanocrystals and to porous silicon, the room-temperature photoluminescence quantum efficiency is low (10-4-10-5), probably due to variations in layer thickness and to diffusion of photoexcited carriers to fast nonradiative recombination centers.