Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-08T02:44:59.636Z Has data issue: false hasContentIssue false

Photolithography: a New Tool for Ceramic Science

Published online by Cambridge University Press:  21 February 2011

Jürgen Rödel
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899
Andreas M. Glaeser
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, and Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720
Get access

Abstract

A recently developed technique combining photolithography, ion beam milling, and hot pressing allows the production of submicron-scale controlled-geometry, controlled-crystallography pore structures in controlled misorientation bicrystals, single crystal-polycrystal ensembles, and polycrystal-polycrystal ensembles. Such microdesigned interfacial structures provide a new tool for studying fundamental aspects of microstructural evolution. Current applications of the technique, opportunities for future research, and future extensions and refinements of the technique are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rödel, J., Ph.D. thesis, University of California, Berkeley, 1988.Google Scholar
2. Rödel, J. and Glaeser, A. M., J. Am. Ceram. Soc., 70, [8], C172 (1987).Google Scholar
3. Rödel, J. and Glaeser, A. M., Lawrence Berkeley Laboratory (LBL) Report 25225, 1988.Google Scholar
4. Rödel, J. and Glaeser, A. M., Materials Letters, 6, [10], 351, (1988).Google Scholar
5. Rödel, J. and Glaeser, A. M., LBL Report 25147, 1988.Google Scholar
6. Rödel, J. and Glaeser, A. M., in Interfacial Structures. Properties and Design, edited by Yoo, M. H., Clark, W.A.T., and Briant, C.L. (Mater. Res. Soc. Proc., 122, Pittsburgh, PA 1988) pp. 485–90.Google Scholar
7. Rödel, J. and Glaeser, A. M., LBL Report 27197, 1989.Google Scholar
8. Gupta, T. K., in Structure ad erties Qf MgQ nd A12O3 Ceramics, edited by Kingery, W. D., (The American Ceramic Society, Columbus OH, 1984) pp. 750–66.Google Scholar
9. Raj, R., Pavinich, W. and Ahlquist, C. N., Acta Metall., 23, [3], 399 (1975).Google Scholar
10. Hickman, S. H. and Evans, B., Phys. Chem. Minerals, 15, 91 (1987).Google Scholar
11. Rayleigh, Lord, Proc. London Math. Soc., 10, 4 (1879).Google Scholar
12. Bandyopadhyay, G. and Kennedy, C. R., J. Am. Ceram. Soc., 60, [1–2], 48 (1977).Google Scholar
13. Maruyama, O. and Komatsu, W., Ceramurgica International, 5, [2], 51 (1979).Google Scholar
14. Singh, R. N. and Routbort, J. L., J. Am. Ceram. Soc., 62, [3–4], 128 (1979).Google Scholar
15. Evans, A. G. and Charles, E. A., Acta Metall., 25, [8], 919 (1977).Google Scholar
16. Robertson, W. M. and Ekstrom, F. E., in Materials Science Research, Vol.3, edited by Kriegel, W. W. and Palmour, Hayne III, (Plenum, New York, 1966) pp. 273–83.Google Scholar
17. Horn, R. G., Clarke, D. R. and Clarkson, M. T., J. Mater. Res., 3, [3], 413 (1988).Google Scholar
18. Mullins, W. W., J. Appl. Phys., 28, [3], 333 (1957).Google Scholar
19. Robertson, W. M., J. Appl. Phys., 42, [1], 463 (1971).Google Scholar
20. Mullins, W. W., Trans. A.I.M.E., 218, 354 (1960).Google Scholar
21. Blendell, J. E. and Handwerker, C. A., J. Cryst. Growth, 75, [2], 138 (1986).Google Scholar
22. Baik, S. and White, C. L., J. Am. Ceram. Soc., 70, [9], 682 (1987).Google Scholar
23. Handwerker, C. A., Cannon, R. M. and Coble, R. L., in Structure and Properties of MgO and Al2O3 Ceramics, edited by Kingery, W. D., (The American Ceramic Society, Columbus OH, 1984) pp. 619643.Google Scholar
24. Yan, M. F., Mat. Sci. and Eng., 48, [1], 53 (1981).Google Scholar
25. Harmer, M. P. and Brook, R. J., J. Mater. Sci., 15, [12], 3017 (1980).Google Scholar
26. Bennison, S. J. and Harmer, M. P., J. Am. Ceram. Soc., 66, [5], C90 (1983).Google Scholar
27. Bennison, S. J. and Harmer, M. P., J. Am. Ceram. Soc., 68, [1], C22 (1985).Google Scholar
28. Hsueh, C. H., Evans, A. G., and Coble, R. L., Acta Metall., 30, [7], 1269 (1982).Google Scholar
29. Spears, M. A. and Evans, A. G., Acta Metall., 30, [7], 1281 (1982).Google Scholar
30. Hsueh, C. H. and Evans, A. G., Acta Metall., 31, [1], 189 (1983).Google Scholar
31. Brook, R. J., J. Am. Ceram. Soc., 52, [1], 56 (1969).Google Scholar
32. Brook, R. J., in Treatise on Materials Science and Technology, Vol.9, edited by Wang, F. F. Y., (Academic Press, New York, 1976) pp. 331–64.Google Scholar
33. Carpay, F. M. A., J. Am. Ceram. Soc., 60, [1–2], 82 (1977).Google Scholar
34. Gupta, T. K., J. Am. Ceram. Soc., 61, [5–6], 191 (1978).Google Scholar
35. Berry, K. A. and Harmer, M. P., J. Am. Ceram. Soc., 69, [2], 143 (1986).Google Scholar
36. Harmer, M. P., in Structure and Properties of MgO Al2O3 Ceramics, edited by Kingery, W. D., (The American Ceramic Society, Columbus OH, 1984) pp. 679–98.Google Scholar
37. Cima, M. J., presented at the 1989 MRS Spring Meeting, San Diego, CA, 1989 (unpublished).Google Scholar
38. Galvin, G., MRS Bull., 13, (7), 31 (1988).Google Scholar