Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T07:44:41.206Z Has data issue: false hasContentIssue false

Photoinduced Electron Transfer Counter to the Bias Field in Coupled Quantum Wells

Published online by Cambridge University Press:  21 February 2011

Mark I. Stockman
Affiliation:
Departments of Physics and Chemistry, Washington State University, Pullman, Washington 99164-2814
Leonid S. Muratov
Affiliation:
Departments of Physics and Chemistry, Washington State University, Pullman, Washington 99164-2814
Lakshmi N. Pandey
Affiliation:
Departments of Physics and Chemistry, Washington State University, Pullman, Washington 99164-2814
Thomas F. George
Affiliation:
Departments of Physics and Chemistry, Washington State University, Pullman, Washington 99164-2814
Get access

Abstract

Optical excitation of electrons in an asymmetric double quantum well is theoretically examined. The well is biased to align the excited levels and permit resonant electron tunneling. Emphasis is made on the photoinduced transfer of electrons counter to the bias electric field force. A density-matrix approach is developed to describe optical excitations in the presence of an arbitrary dephasing. The excitation profiles obtained for cases of different dephasing reveal the full range of tunneling coupling between the wells from completely coherent to incoherent (stepwise).

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bastard, Gerald, Wave Mechanics Applied to Semiconductor Heterostructures (Les Editions de Physique, Les Ulis, France, 1988).Google Scholar
2. Sauer, R., Thonke, K., and Tsang, W. T., Phys. Rev. Lett. 61, 609 (1988).CrossRefGoogle Scholar
3. Deveaud, B., Clerot, F., Chomette, A., Regreny, A., Ferreira, R., Bastard, G., and Sermage, B., Europhys. Lett. 11, 367 (1990).CrossRefGoogle Scholar
4. Oberli, D. Y., Shah, J., Damen, T. C., Wu, C. W., Chang, T. Y., Miller, D. A. B., Henry, J. E., Kopf, R. F., Sauer, N., and DiGiovanni, A. E., Phys. Rev. B 40, 3028 (1989).CrossRefGoogle Scholar
5. Pandey, L. N. and George, T. F., J. Appl. Phys. 69, 2711 (1991).CrossRefGoogle Scholar
6. Leopold, D. J. and Leopold, M. M., Phys. Rev. B 42, 11147 (1990).CrossRefGoogle Scholar
7. Luryi, S., Solid State Commun. 65, 787 (1988).CrossRefGoogle Scholar
8. Leo, K., Shah, J., Göbel, E., Damen, T., Schmitt-Rink, S., and Schäfer, W., Phys. Rev. Lett. 66, 201 (1991).CrossRefGoogle Scholar
9. Ferreira, R., Delalande, C., Liu, H. W., Bastard, G., Etienne, B., and Palmier, J. F., Phys. Rev. B 42, 9170 (1990).CrossRefGoogle Scholar
10. Alexander, M. G. W., Nido, M., Ruhle, W. W., and Kohler, K., Phys. Rev. B 41, 12295 (1990).CrossRefGoogle Scholar
11. Liu, H. W., Ferreira, R., Bastard, G., Delande, C., Palmier, J. F., and Etienne, B., Phys. Rev. Lett. 54, 2082 (1989).Google Scholar
12. Liu, H. C., Buchanam, M., and Vasilevski, Z. R., J. Appl. Phys. 68, 3780 (1990).CrossRefGoogle Scholar
13. Palevsky, A., Beltram, F., Capasso, F., Pfeifer, L., and West, K. W., Phys. Rev. Lett. 65, 1929 (1990).CrossRefGoogle Scholar
14. Manasreh, M. O., Szmulovich, F., Fischer, D. V., Evans, K. R., and Stutz, C. E., Appl. Phys. Lett. 57, 1790 (1990).CrossRefGoogle Scholar
15. Fu, W. S., Olbright, G. R., Owyoung, A., Klemm, J. F., Biefield, R. M., and Hadley, G. R., Appl. Phys. Lett. 57, 1404 (1990).CrossRefGoogle Scholar
16. Stockman, M. I., Muratov, L. S., Pandey, L. N., and George, T. F., Phys. Lett. A 163 233 (1992).CrossRefGoogle Scholar