Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T17:36:37.041Z Has data issue: false hasContentIssue false

Photo-Induced CVD of Tantalum Pentoxide Dielectric Films Using an Injection Liquid Source

Published online by Cambridge University Press:  10 February 2011

J.-Y. Zhang
Affiliation:
Electronic and Electrical Engineering, University College London, Torrington Place, London WCIE 7JE, UK
I.W. Boyd
Affiliation:
Electronic and Electrical Engineering, University College London, Torrington Place, London WCIE 7JE, UK
M.B. Mooney
Affiliation:
National Microelectronics Research Centre, LeeMaltings, Prospect Row, Cork, Ireland
P.K. Hurley
Affiliation:
National Microelectronics Research Centre, LeeMaltings, Prospect Row, Cork, Ireland
B.J. O'sullivan
Affiliation:
National Microelectronics Research Centre, LeeMaltings, Prospect Row, Cork, Ireland
J.T. Beechinor
Affiliation:
National Microelectronics Research Centre, LeeMaltings, Prospect Row, Cork, Ireland
P.V. Kelly
Affiliation:
National Microelectronics Research Centre, LeeMaltings, Prospect Row, Cork, Ireland
G.M. Crean
Affiliation:
National Microelectronics Research Centre, LeeMaltings, Prospect Row, Cork, Ireland
J.-P. Senateur
Affiliation:
INPG-ENS de physique de Grenoble, BP 46-38402 SAINT MARTIN D'HERES CEDEX, Grenoble, France
Get access

Abstract

In this paper the new technique of ultraviolet-assisted injection liquid source (UVILS) chemical vapour deposition (CVD) of thin tantalum pentoxide films on p-type Si (100) wafers is presented. This method involves the use of a krypton chloride (KrCl*) excimer lamp, radiating at 222 nm, and a novel injection liquid source capable of delivering precisely controllable quantities of a novel high-volatility liquid metalorganic precursor into the CVD chamber. The physical and chemical properties of the films formed have been studied using spectroscopic ellipsometry and Fourier transform infrared spectroscopy measurements while the electrical properties of the films were determined by surface charge analysis, capacitancevoltage, and current-voltage measurements. Simple metal/oxide/silicon capacitor structures incorporating this tantalum pentoxide have been fabricated. Refractive index values of 2.09±0.07, dielectric constant values of 18-24, fixed oxide charge content of < 1 × 1011 cm−2 and breakdown fields higher than 2 MV/cm can be readily obtained in the as-deposited films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Moon, B.K. and Ishiwara, H., Appl. Phys. Lett. 67, p. 1996 (1995).10.1063/1.114765Google Scholar
2 Lo, G.Q., Kwong, D.L., Fazan, P.C., Mathews, V.K., and Sandler, N., IEEE Electron Device Lett. 14, p. 216 (1993).10.1109/55.215172Google Scholar
3 Eguchi, K. and Kiyotoshi, M., Integr. Ferroelectr. 14, p. 33 (1997).10.1080/10584589708019974Google Scholar
4 Murawala, P.A., Sawai, M., Tatsuta, T., Tsuji, O., Fujita, S., and Fujita, S., Jpn. J. Appl. Phys. 32, p. 368 (1993).10.1143/JJAP.32.368Google Scholar
5 Shinriki, H., Kisu, T., Kimura, S., Nishioka, Y., Kawamoto, Y., and Mukai, K., IEEE Trans. Electron. Dev. 37, p. 1939 (1990).10.1109/16.57154Google Scholar
6 Sankur, H.O. and Gunning, W., Appl. Opt. 28, p. 2806 (1989).10.1364/AO.28.002806Google Scholar
7 Laviale, D., Oberlin, J.C., and Devine, R.A.B., Appl. Phys. Lett. 65, p. 2021 (1994).10.1063/1.112781Google Scholar
8 Oshio, S., Yamamoto, M., Kuwata, J., and Matsuoka, T., J. Appl. Phys. 71, p. 3471 (1992).10.1063/1.350948Google Scholar
9 Nishimura, Y., Tokunaga, K., and Tsuji, M., Thin Solid Films 226, p. 144 (1993).10.1016/0040-6090(93)90220-JGoogle Scholar
10 Imai, Y., Watanabe, A., Mukaida, M., Osato, K., Tsunoda, T., Kameyama, T., and Fukuda, K., Thin Solid Films 261, p.76 (1995).10.1016/S0040-6090(95)06510-5Google Scholar
11 Zhang, J.-Y., Bie, L.-J., and Boyd, I.W., Jpn. J. Appl. Phys. 37, p. L27 (1998).10.1143/JJAP.37.L27Google Scholar
12 Tanimoto, S., Matsui, M., Kamisako, K., Kuroiwa, K., and Tarui, Y., J. Electrochem. Soc. 139, p. 320 (1992).10.1149/1.2069193Google Scholar
13 Yamagishi, K. and Tarui, Y., Jpn. J. of Appl. Phys. 25, p. L306 (1986).10.1143/JJAP.25.L306Google Scholar
14 Bergonzo, P. and Boyd, I.W., Appl. Phys. Lett. 63, p. 1757 (1993).10.1063/1.110705Google Scholar
15 Boyd, I.W. and Zhang, J.-Y., Nucl. Instr. Methods in Phys. Res. B121, p. 349 (1997).10.1016/S0168-583X(96)00538-1Google Scholar
16 Felten, F., Senateur, J.P., Labeau, M., Zhang, K.Y. and Abrutis, A., Thin Solid Films 296, p. 79 (1997).10.1016/S0040-6090(96)09351-0Google Scholar
17 Kizilyalli, I.C., Huang, R.Y.S. and Roy, P.K., IEEE Electron Device Letters 19, p. 423 (1998).10.1109/55.728900Google Scholar
18 Zhang, J.-Y. and Boyd, I.W., J. Appl. Phys. 80, p. 633 (1996).10.1063/1.362871Google Scholar
19 Zhang, J.-Y., Esrom, H. and Boyd, I.W., Appl. Surf. Sci. 109/110, p. 482 (1997).10.1016/S0169-4332(96)00789-1Google Scholar
20 An, C.H. and Sugimoto, K., J. Electrochem. Soc. 139, p. 1956 (1992).10.1149/1.2069529Google Scholar
21 Devine, R.A.B. and Vallier, L., Appl. Phys. Lett. 68, p. 1775 (1996).10.1063/1.116663Google Scholar
22 McKinley, K.A. and Sandler, N.P., Thin Solid Films 290–291, p. 440 (1996).10.1016/S0040-6090(96)08975-4Google Scholar
23 Autran, J.L., Paillet, P., Leray, J.L., and Devine, R.A.B., Sensors and Actuators A51, p. 5 (1995).10.1016/0924-4247(95)01060-2Google Scholar
24 Kamiyama, S., Lesaicherre, P., Suzuki, H., Sakai, A., Nishiyama, I. and Ishitani, A., J. Electrochem. Soc. 140, p. 1617 (1993).10.1149/1.2221612Google Scholar